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Preface

TGM (Tim, Grafut, Maz) is a metric system specifically designed to take full ad-
vantage of the superior dozenal (base twelve) arithmetical system. As such, it may
seem a bit esoteric upon first reading. However, experience has shown that the units

presented by TGM, and the dozenal counting system which it was designed to exploit, are
superior to any of the alternatives currently available for both daily and scientific use.

The “metric system” (SI is currently the most popular version thereof) has suffered from
constant complaints regarding both its imposition on those countries which now employ
it (this has always, historically, been by force of law, and never by choice), as well as for
the inconvenient sizes of the units. Furthermore, its original myopically few set of prefixes
(no higher than kilo, no lower than milli) having proven comically inadequate, it has been
extended several times, and the extensions have resulted in a system which is esoteric in the
extreme. Its units are so mismatched that standardized versions of the system must always
make use of some power of the base units rather than the base units themselves; the original
system was based on the centimeter, gram, and second (commonly referred to as “cgs”),
while the current SI version is based on the meter, kilogram, and second (commonly called
“mks”). Finally, the system was based on measurements of what were regarded as clearly
measured constants at the time (the volume of a given mass of water, the circumference of
the earth, and so forth) which we now know were slightly but significantly mismeasured; as
a result, units like the meter and the liter do not actually represent what they were designed
to stand for. And, of course, its basis on inferior decimal arithmetic cannot be rectified
without fundamentally and completely changing the entire system.

The imperial and customary systems, on the other hand, have a great many conveniently-
sized units with a great many happy factors, including two with the most convenient of
all numbers, twelve (the foot with its twelve inches and the troy pound with its twelve
troy ounces). However, it suffers from the same problems as the metric system discussed
above. It is chaotic in the extreme, with units of sometimes two, sometimes three, sometimes
four, sometimes eight, sometimes twelve, and sometimes sixteen subparts; e.g., the volume
system, with its tablespoons of three teaspoons, its cups of eight ounces, its pints of two
cups, its quarts of two pints, and its gallons of four quarts, with the pints being sometimes
sixteen ounces (the customary system, common in North America) and sometimes twenty
ounces (the imperial system, still sometimes used in Great Britain). They do not suffer from
the metric system’s irrevocable basis in decimal; however, they are clearly not suitable for
serious scientific work (though much great science has been done with them despite their
unsuitability1), and they make even daily work much more complicated than it has to be

1The Apollo missions are probably the most spectacular example, though of course this could be multiplied
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with their chaotic divisions and inconsistent relationships to one another.
TGM solves the problems of both systems. First, it eschews decimal division entirely,

favoring the superior twelve for its divisibility and easier arithmetic. It bases itself on a
number of fundamental physical realities, resulting in units conveniently sized for both daily
and scientific work, and it maintains a strict 1 : 1 ratio between its basic quantities without
sacrificing useful sizes in doing so. There is no need to further enunciate its many virtues
here, as they are the subject of the bulk of this book.

TGM was invented by Mr. Tom Pendlebury of England, a member of the Dozenal Society
of Great Britain. His system of an orderly set of prefixes denoting the powers of the dozen,
and of representing this mathematically with either a superscript for positive powers or
a subscript for negative ones, is brilliant and used throughout this work, though for the
specific prefixes another system, called Systematic Dozenal Nomenclature, is used. All of
the examples and exercises, as well as the answers thereto, are taken almost verbatim from
Mr. Pendlebury’s original work, except for those in Chapters 1 and 2. Furthermore, the
basic structure of this book is also Mr. Pendlebury’s doing; while his explanations have been
extended and sometimes entirely replaced, the outline of this work explaining the TGM
system is owed entirely to him.

Dozenalists everywhere owe Mr. Pendlebury a great debt of gratitude for providing them
with a coherent, systematic, and scientific metric system for use with the dozenal base. His
work in divising it was monumental, and his brilliance shines forth in every unit and every
page of its exposition. May he rest in peace, and be ever remembered for this enormous and
pivotal work.

nearly endlessly.
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The Dozenal System
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Numbers are everywhere. They pervade all that we do, from our bank accounts
to our medical appointments to the machines that we use every day. In the ever-
increasingly large world of software, everything is numbers internally, even the things

that don’t look anything like numbers when the computer shows them to us. Numbers are
nearly as pervasive and ubiquitous as words are, surrounding and informing nearly everything
we do.

Yet we think very little about numbers, certainly much less than we think about words.
Why is this? For numbers are nearly as important to us, and numbers have many interesting
facets. For our purposes, the way that we write numbers is anything but written in stone;
we have chosen one particular way of doing it, a way that most of us rarely if ever consider,
but that doesn’t mean that ours is the only way. There could very well be other and better
ways of writing our numbers.

Just as we write words with letters, so we write numbers with digits. And just as we
use letters to make words according to a certain spelling, we use digits to make numbers
according to a certain base. We use the letters and spelling that we use for writing our words
because they represent our sounds, however clumsily; why do we use the digits and base that
we use for writing our numbers, and could there be a better or easier way that we haven’t
tried?

Chapter 1: Digits and Bases

Digits are to numbers as letters are to words. Some letters, of course, make up
words all by themselves; think of “I” and “a.” Most words, though, are made up of
multiple letters, examples of which are numerous enough as not to require multipli-

cation. Such a word includes “number”; such numbers include “144” or “2,368.”
But what does the sequence of letters “number” mean? The reader, of course, understands

English, so he knows in at least a general way what it means; but he knows this only in
English. That same sequence of letters could mean absolutely anything, or indeed nothing,
in another language without any contradiction. It only means number because we all agree
that it means number, at least when we are all speaking English. There is nothing special
about those letters combined in that way to give it that particular meaning; it just happens
to be the way that all English-speakers have agreed to read them.

So also with digits. Some digits mean a number all by themselves; for example, “4” or
“7.” But most numbers have to be represented by certain digits arranged in certain ways.
To represent the number “one hundred and forty-three,” for example, we have to arrange
the digits in this way:

143

We cannot change the order; we cannot introduce any additional digits (unless they are zero;
and even then, if they are added to the right side, they must be separated from these digits
by a decimal point). For all practical purposes, this is the only way to write the number
“one hundred and forty-three” out of digits.
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Translating Binary to Decimal
Binary Digit 1 0 0 0 1 1 1 1
Decimal Trans. 128 0 0 0 8 4 2 1

d/143

Table 1: An example of a binary number and its decimal translation.

But why do those digits arranged in that particular way mean “one hundred and forty-
three?” That is, why do they mean “one hundred, four tens, and three ones?” We’ve already
seen the answer; they mean that only because we’ve all agreed that they mean that. We
could just as easily have agreed that they mean “one sixty-four, four eights, and three ones,”
or “one two-hundred-fifty-six, four sixteens, and three ones,” and they really would mean
that, just by the fact of us all agreeing that they did. Numbers, like words, are spelled in
a certain way. We have all agreed that we’ll spell out numbers using these particular digits
(that is, “0” through “9”) and this particular base (that is, ten). That agreement is the only
thing that compels us to spell our numbers the way we do.

The letters we use for spelling numbers are well known:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

It is a closed and finite set; it can include no more digits and no less. The base we use for
counting is also well known; we call it “ten” and we spell it, using our digits and base, “10.”
The digits are like our letters; the base is like our language. We speak decimal throughout
most of the world, and spell it with these ten digits.

But what if we chose a different base? Computers, for example, work out things in
base two; they speak binary rather than decimal. Because they only speak binary, not
decimal, they only need two symbols for their language rather than our ten; those symbols
are generally written {0, 1}, though computers themselves, of course, don’t see them, knowing
them merely as “off” and “on.” We know how to say “one hundred, four tens, and three
ones” in decimal; how do we say it in binary?

A demonstration of how to say it, and its translation into our current decimal language,
is displayed in Table 1 on page 4. In brief, each digit in a number has a meaning beyond
merely its own value. The first “1” in “10001111” doesn’t mean “one”; rather, it means “one
unit of one hundred and twenty-eight,” because it’s the eighth digit to the left of the number.
(In decimal, a “1” in that position would mean “one unit of ten million,” as in “10,000,000.”)

The base determines what each number means when speaking a given language. For
example, when speaking numbers in decimal, the second position means “tens,” and the
digit there isn’t counting up ones, but rather how many tens to include in the final meaning.
The third position means “hundreds,” how many hundreds to include in the final number;
in other words, how many “ten times ten” units to include. The fourth position means ten
times the third position; the fifth means ten times the fourth; and so on. In binary, on
the other hand, each position means two times the last position. So the one on the right
in “10001111” means simply “one,” but the one in the next position means one unit of two
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times one, or one unit of two; and the next one means one unit of two times that unit, or
four; and the next means one unit of two times that, or eight. And so on, as long as is
necessary.

The base does have an effect on what digits are needed, just as the language has an
effect on what letters are used. The French don’t use “w” (much), and binary doesn’t use
“3.” A “number language,” or base, only needs a number of digits equal to itself. So, for
example, in binary (base two), we need only two digits, {0, 1}. In decimal, of course, we need
ten digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In hexadecimal (base sixteen), we need sixteen digits;
typically, once we get past nine, we simply go into the letters of the alphabet, like so:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}

When we’re speaking hexadecimal, therefore, “DEADBEEF” is a perfectly valid and accept-
able number (translated into decimal, it means 3,735,928,559), and indeed this number is
often used as a test of hexadecimal interpreters in computers.

Almost everyone on the planet (at least, everyone with wetware) speaks decimal; so
shouldn’t we just leave it at that? The answer to that is “no.” While spoken languages are
more or less interchangeable in terms of their utility for communication, at least considered
in themselves, the same is not true for numbers. Numbers can be spoken in ways that are
more or less simple for human beings to understand. Speaking in binary, for example, is
difficult for people; relatively small numbers become extremely long, and it wastes resources
insofar as human beings have the ability to easily handle numbers greater than two, unlike
computers, which can recognize only “off” and “on.” Speaking in sexagesimal (base sixty),
on the other hand, would also be very difficult for people; while large numbers are relatively
short, the number of digits necessary (sixty) is oppressive.

Furthermore, some bases can handle common fractions better than others can. The most
common fractions are halves (1

2); thirds (1
3); and the halves of each (1

4 ;
1
6 ; and the half of

the quarter, 1
8). Any base that can’t handle these fractions quickly and easily should get a

pretty hard look from someone trying to decide which number “language” is the easiest for
people to speak.

Odd-numbered bases, as a first example, can’t even conveniently represent halves (for
example, in base seven, one half is 0.3333 . . .), which is pretty damning given that it is such
a common fraction. This provides grounds for eliminating all odd numbers as potential bases
immediately. This narrows our field by half (no irony intended), but still leaves us with a
lot of potential candidates for a number base.

Even bases, though, are also not all created equal. Those which are not divisible by
three (such as eight, ten, and sixteen) make handling thirds needlessly difficult (in decimal,
for example, one third is 0.3333 . . .). This also makes handling a half of a third, a sixth,
needlessly difficult (in decimal again, one sixth is 0.16666 . . .). Those which are not divisible
by four (such as ten and fourteen) make quarters difficult, though the fact that four is twice
two mitigates this problem somewhat. For example, decimal keeps 1

4 down to only two
places, 0.25. However, half of a quarter, or an eighth, still winds up at three places, 0.125;
a very common division thus winds up with three places, making things more difficult than
they have to be.

The decimal base is clearly weak with regard to these most important fractions. While
it does contain two as an even divisor, thus leading to a simple, single-place fraction for
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Fractions in Various Bases
Eight Ten Twelve Fourteen Sixteen

2 0.4 0.5 0.6 0.7 0.8
3 0.2525 . . . 0.3333 . . . 0.4 0.4949 . . . 0.5555 . . .
4 0.2 0.25 0.3 0.37 0.4
5 0.14631463 . . . 0.2 0.24972497 . . . 0.2B2B . . . 0.3333 . . .
6 0.12525 . . . 0.16666 . . . 0.2 0.24949 . . . 0.2AAAA . . .
7 0.1111 . . . 0.142857 0.186A35 0.2 0.249249 . . .
8 0.1 0.125 0.16 0.1A7 0.2
9 0.1111 . . . 0.14 0.17AC63 0.1C71C7 . . .
10 0.1 0.124972497 . . . 0.15858 . . . 0.1999 . . .
11 0.1111 . . . 0.13B65 0.1745D
12 0.1 0.124949 . . . 0.15555 . . .
13 0.1111 . . . 0.13B13B . . .
14 0.1 0.1249249 . . .
15 0.1111 . . .
16 0.1

Table 2: A comparison of fractions for even bases between eight and sixteen.

the half, it skips three, four, six, and eight altogether. Every third number is a multiple
of three; yet no power of ten, no matter how high one multiplies, is ever also a multiple of
three. Similarly, every fourth number is a multiple of four; but one must get to 102 before
the fourth becomes an even divisor. Every power of ten also misses six as an even factor, and
one must wait until 103 (1000) before eight divides in evenly. All told, ten simply skips many
of the most important fractions, and those it does catch it generally catches imperfectly. Ten
is certainly a poor base from this perspective.

A full comparison of all whole-number, single-digit fractions in even bases from eight to
sixteen is presented in Table 2 on page 6. This shows that all bases have irregular whole-
number fractions; for example, the reciprocal of the base less one is always 0.1. However, it
also shows that one base stands out in the regularity of the most common and important
fractions (1

2 ,
1
3 ,

1
4 ,

1
6 , and

1
8): that is the base of twelve.

A full defense of the superiority of twelve as a number base (a number “language” re-
ferred to as dozenal, after the dozen) is beyond the scope of this work; it has been analyzed
extensively in many sources, and those interested in further information on the topic should
peruse some of the works cited in Appendix C on page 92. There, one can find many inter-
esting and varied arguments for the superiority of the dozenal system over other candidates
from the perspective of many different fields. For now, however, we will rest the argument
as it stands, and move on to other considerations.

Once we’ve accepted the dozen as our base, we are faced with the problem of how we
spell numbers and speak about them in our new language. That is the subject of our next
section.
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Exercises

1. Assuming that “A” is ten and “B” is eleven, translate the following numbers into
decimal: (a) 2A, (b) 1B, (c) 16, (d) 3B, (e) AA, (f) BB.

2. Using “A” for ten and “B” for eleven, translate the following numbers into dozenal:
(a) 143, (b) 130, (c) 47, (d) 18, (e) 23, (f) 34.

Chapter 2: Spelling in Dozens

Dozenal spelling and speaking require two considerations. First, we need to de-
cide what new digits to use. As we discussed earlier, a number language needs a
number of digits equal to its base; so, since we’re talking here about the dozenal

base, we need twelve symbols. However, in common use we only have ten; therefore, two
more are required. Second, we need to decide how we will pronounce those new digits, and
what words will be used for the powers of our base, for many of which there are currently
no special words but which will be extremely important in our new number language.

There are many, many candidates for the two extra symbols; The Duodecimal Bulletin
published an overview of all the varied proposals recently which shows the true scale of the
issue.2 A real analysis of the various proposals is beyond the scope of this little book; for
our purposes, we will assume the symbology commonly employed by the Dozenal Society of
Great Britain, which uses symbols devised by famous shorthander and dozenalist Sir Isaac
Pitman, to be preferable. Fuller arguments on this topic can be found in works cited in
Appendix C on page 92; a defense of the Pitman characters in particular has been mounted
in my own A Primer on Dozenalism.3 The symbols are simply X for ten and E for eleven;
they blend well with our current digits, are easy to write, and are easy to integrate into
existing fonts.

As for how these two new digits are pronounced, we will handle them one at a time.
Currently we pronounce the number one greater than nine as “ten,” and there seems no
reason to change that. It’s a single syllable, so there’s no need to shorten it, and it’s best to
change as little as possible when changing our number system, so leaving ten as it is seems
advisable. As for our second new digit, we currently pronounce the number one greater
than ten as “eleven.” This is acceptable when it’s higher than our base, as we’re accustomed
to using multiple syllables for such numbers; however, now that eleven is lower than our
base, it makes counting cumbersome to have a three-syllable word thrown in among many
monosyllables and two disyllables (“zero” and “seven”). Tom Pendlebury recommended
shortening this to “elv,” which seems a perfectly good option, and at the very least as good
as any other.

2Michael deVlieger, Symbology Overview in 99 The Duodecimal Bulletin 13–14 (St. Louis, MO: 11E6),
available at http://www.dozenal.org/article/db4a211.pdf.

3Donald P. Goodman III, A Primer on Dozenalism, available at http://gorpub.freeshell.org/
dozenal/blosxom.cgi/dozprim.html.

http://www.dozenal.org/article/db4a211.pdf
http://gorpub.freeshell.org/dozenal/blosxom.cgi/dozprim.html
http://gorpub.freeshell.org/dozenal/blosxom.cgi/dozprim.html
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Finally, we have to pronounce our base itself. “Twelve” is fine, and sometimes should be
retained; but since our system is called “dozenal” (“twelvinal” being too cumbersome), per-
haps we should alter our word for twelve to match. Furthermore, using twelve in compounds
often leads to tongue-twisters; pronouncing what in the dozenal system is written as “70”
(seven twelves and zero ones) as “seventwelve” is clumsy and unappealing. Sir Isaac Pitman,
an enthusiastic dozenalist, recommended using “zen” for this purpose, when twelve was seen
by itself as well as in compounds, leading to “sevenzen,” “fourzen,” and the like. This is
easily remembered, linked to the word “dozen,” and has the advantage of historical lineage
on its side. The Uncial system (explained shortly) uses “unqua” for twelve; abbreviating this
to "qua," as in “sixqua” or “ninequa,” is also an easy shorthand for such common numbers.

So the dozenal system of counting runs as follows (excluding zero):

1 2 3 4 5 6 7 8 9 X E 10
one two three four five six seven eight nine ten elv unqua

It’s easy to go beyond this simple number line up to 102 (written as 100 in dozenal; translated
into decimal, it means one hundred and forty-four). For seven dozen and six, we write “76”
and say “sevenqua six”; for three dozen and ten, we write “3X” and say “threequa ten”;
and so on. It’s important to forget our habit of reading numbers in decimal when we do
this; we’re reading dozenal now. “30” does not mean “thirty”; it means “threequa,” three
dozen, in decimal thirty-six. “10” does not mean “ten”; “X” means “ten,” while “10” means
onequa, a dozen. It’s also important not to translate them into decimal when reading them,
either; “30” really does mean threequa, not thirty-six written in a funny way. Getting used
to thinking in dozenal is vital if we are to take real advantage of the system; and it takes
only a little practice to do so.

But how do we go beyond EE (elvqua elv, decimal one hundred and forty-three)? We
know that we would spell the next number in digits as “100,” but how do we say it? Once
again, Tom Pendlebury, in his original booklet on TGM, proposed a complete and admirably
simple system for such pronunciation.4 It is detailed in Table 3 on page 9.

The system is simple: there is a set of prefixes, one for each power of twelve. So “zena”
is the prefix for 101; “duna” is the prefix for 102; and so on. These can even be combined;
for example, “zenduna” is the prefix for 1012, and “duntrina” is the prefix for 1023. Each
indicates in a simple manner how many zeroes are to be added to the number to make
that number. Compare that to our present system, in which we have no such easy prefixes;
rather, we have “thousand” for decimal 103, “million” for decimal 106, and no special words
for anything in between. Furthermore, none of our current words give any indication of how
many places the number referred to has; this often leads to confusion, particularly given the
differences in the “short” system (used in America, in which a billion is a thousand times
a million) and the “long” system (used in Commonwealth countries, in which a billion is a
million times a million, and the American billion is called a “milliard”).

This system works for negative powers of zen, also; that is, it works with fractional
parts, what we commonly, and erroneously, refer to as “decimals.” In decimal spelling, we

4Tom Pendlebury, TGM: A coherent dozenal metrology based on Time, Gravity and Mass
(Dozenal Society of Great Britain), available at http://www.dozenalsociety.org.uk/pdfs/TGMbooklet.
pdf.

http://www.dozenalsociety.org.uk/pdfs/TGMbooklet.pdf
http://www.dozenalsociety.org.uk/pdfs/TGMbooklet.pdf
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Full Pendlebury System
Prefix Number Zeroes Exp. Decimal
Zen 10 1 101 12
Duna 100 2 102 144
Trina 1,000 3 103 1,728
Quedra 10,000 4 104 20,736
Quen 100,000 5 105 248,832
Hes 1,000,000 6 106 2,985,984
Sev 10,000,000 7 107 25,831,808
Ak 100,000,000 8 108 429,981,696
Neen 1,000,000,000 9 109 5,159,780,352
Dex 10,000,000,000 X 10X 61,917,364,224
Lef 100,000,000,000 E 10E 743,008,370,688
Zennil 1,000,000,000,000 10 1010 8,916,100,448,256
Zenzen 10,000,000,000,000 11 1011 106,993,205,379,072
Zenduna 100,000,000,000,000 12 1012 1,283,918,464,548,864
. . .
Dunduna 22 1022 1.144754599. . . x 1028

Table 3: The full Pendlebury system of dozenal counting.

separate fractional parts from whole parts using a “decimal point,” which is written like a
period (at least in America; it is written in different ways, or even with an entirely different
symbol, elsewhere). In dozenal spelling, we separate fractional parts from whole parts using a
dozenal point, which we write “;”.5 While in decimal counting the decimal point is pronounced
“point,” in dozenal counting the dozenal point is pronounced “dit.” This makes conversions
much easier to speak about; rather than having to say “point six dozenal equals point five
decimal,” we can say simply, “dit six equals point five.” Furthermore, the distinction makes
it immediately clear which number language we happen to be speaking at the moment.

In the Pendlebury system, the same prefixes are used for negative powers of twelve as
for positive ones, but they end in “i” rather than “a.” So, for example, rather than have
one zena (10), we have one zeni (0;1). We can similarly talk of have ten dunis (0;0X) or
fourzen-five trinis (0;45) or simply five trinis (0;005); or, if the occasion calls for it, we can
simply say “zero dit zero zero five,” as is common in our current parlance.

In addition to the Pendlebury system, other dozenalists have devised a system which ac-
cords with the standards of the International Union of Pure and Applied Chemistry (iupac).
iupac has a system of numeric prefixes which are used to create names for elements based
on their atomic number; these numeric prefixes are internationally acknowledged and well-
known. Once expanded for use with dozenals, they can be used to build a system of prefixes
which are unique as well as internationally recognized.

5This is often called a “Humphrey point” after its first proponent, H. K. Humphrey, one of the early
members of the Dozenal Society of America.
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Full Uncial System
Prefix Positive Numeric Negative Numeric
Nil Nilqua 100 Nilcia 10−0

Un Unqua 101 Uncia 10−1

Bi Biqua 102 Bicia 10−2

Tri Triqua 103 Tricia 10−3

Quad Quadqua 104 Quadcia 10−4

Pent Pentua 105 Pentia 10−5

Hex Hexua 106 Hexia 10−6

Sept Septua 107 Septia 10−7

Oct Octua 108 Octia 10−8

Enn Ennqua 109 Enncia 10−9

Dec Decqua 10X Deccia 10−X
Lev Levqua 10E Levcia 10−E
Unnil Unnilqua 1010 Unnilcia 10−10

Unun Ununqua 1011 Ununcia 10−10

Unbi Unbiqua 1012 Unbicia 10−12

. . .
Bibi Bibiqua 1022 Bibicia 10−22

Table 4: The Uncial system of dozenal counting.

This system is called the Uncial system, after the word uncia, which was used by the
ancient Romans for their base-twelve fractional system. It is displayed in Table 4 on page X.
We will use this system throughout this book.

The Uncial system has some advantages over Pendlebury’s. Firstly, as mentioned before,
it is international in its foundations, being derived from iupac with only a few small ex-
tensions to allow it to be used in dozenal. Furthermore, the Pendlebury system results in
prefixes that differ only in their final vowel, which in many languages (including English)
tends to get reduced to schwa. In other words, it is very difficult, in normal speech, to tell
the difference between “trinaHour” and “triniHour.” The Uncial system avoids this trouble
by placing a -qua (pronounced “kwa”) on the root for a positive prefix, but a -cia (pro-
nounced “sya” or “sha”) for a negative one. The positive and negative prefixes are thus
easily distinguishable; there is no confusion between “unqua” and “uncia.”

The Uncial system is also expandable in a more consistent way than the Pendlebury
system is. By simply removing the suffix from the prefix (-qua, which mean “exponent”),
we can combine these prefixes in a clearer and less ambiguous way. The Pendlebury system
makes no distinction between zen as a prefix and zen as part of a larger prefix; so the same
linguistic unit is used in both “zena” and “zenduna,” though they are functioning in quite
different ways. Removing the exponential suffix from the prefix in the Uncial system means
that the number is acting on its own, not as a power of twelve; so the “biqua” meaning 102

and the two “bi” prefixes in “bibiqua” reflect their own different meanings.
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Futhermore, the Uncial prefixes can be used in other contexts. With the Pendlebury
prefixes, “trinal” as an adjective could mean “three” or “103”; in the Uncial system, “trinal”
can only mean “three,” for 103 can only be “triqual.”

Regardless of the system of words that we use, all the normal rules of exponential arith-
metic apply here. When multiplying, simply multiply the two numbers and add together
any positive prefixes and subtract any negative. So two biqua (200) multiplied by three
triqua (3000) is six pentqua (60 0000); six pentqua (60 0000) multiplied by three bicia (0;03)
is onezen-six triqua (1 6000); more simply, biqua times triqua equals pentqua, while pentqua
times bicia equals triqua. When dividing, do precisely the opposite; that is, subtract positive
prefixes and add negative ones. For powers, multiply the prefix by the desired power, and for
roots, divide it. So the square of triqua is hexqua, but the cube root of unbiqua is quadqua.

When writing these numbers, the full prefixes become rather cumbersome. Therefore,
we can simply use a raised number for a positive prefix, or a lowered number for a negative
one. So, for example, 5000 could also be written 35, and 0;04 could be written 24. This is
a brilliant and compact notation, and eliminates the need for such long and cumbersome
notation as 3.5 × 104. Even more often, however, these raised or lowered numbers will be
attached to units; so, for example, one uncia of one foot (that is, one inch) could be written
“1 1ft,” while a biqua feet (100 feet) could be written “1 2ft.” This compact abbreviation is
often very useful.

To keep the prefixes clearly separated from the units, unit names and abbreviations should
begin with a capital letter, while the prefixes should be lowercase; so, for example, we may
speak of hexquaFeet or triquaSeconds. (Whenever this is possible, that is; when working
with the SI metric system, sometimes capital or lowercase abbreviations mean different units,
so their native capitalization must be retained when the abbreviations are used.)

Any unit, from TGM or any other system, can take these prefixes and use this number
notation; so one can easily speak of hexquaYears (the dozenal “million,” written here 6Yr)
or biquaMeters (2m).

Only one difficulty remains: how do we clearly identify a number as being written in
dozenal or decimal? To start with, this is a dozenal book, so from here on a number should
be presumed dozenal unless marked otherwise. From time to time a decimal number will
be useful; these will be marked with the symbol “d/” like so: d/45. Of course, any number
containing a decimal point (“.”) is clearly decimal, and need not be so marked; likewise, any
number containing a uncial point (“;”) is clearly dozenal, and need not be so marked. When
necessary, dozenal numbers will be marked with the symbol “z/” like so: z/45.

Now we’ve learned how numbers work; what base is the best; how to write numbers in
our base; and how to talk about numbers in our base. That completed, we can move on to
the really interesting part of this book, the metric system which it was written to describe:
TGM.

Examples

In the decimal system, there are often several ways of reading a number; for example, “0.879”
could be read as “zero point eight seven nine,” as “eight point seven nine tenths,” as “eight
hundred and seventy-nine thousandths,” and so on. The Uncial system is no different. Using
the Uncial system, let’s explore the possibilities by putting the following into words:
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1. 67. We can do this in two ways:
(a) Six unqua seven, or, abbreviated, sixqua seven.
(b) Move the uncial point. Six dit seven unqua, written 16;7.

2. 4E79. We can do this in several ways:
(a) Four quadqua, elv biqua seven unqua nine. The simplest and most straightfor-

ward, not unlike the decimal equivalent “eight thousand, five hundred and eighty-
nine.”

(b) Move the uncial point. Four dit elv seven nine quadqua. This would be written
44;E79.

(c) State the highest power and then recite the digits. Four quadqua elv seven nine.
3. X467 95E2. Again, several possible ways:

(a) Ten septqua, four hexqua, six pentqua, seven quadqua, nine triqua, five biqua, elv
unqua two. Long-winded but complete and straightforward.

(b) Group the digits. This could be done several ways according to the reader’s
preference; one example would be ten four six seven quadqua nine five elv two.

(c) Move the uncial point. Ten dit four six seven nine five elv two septqua, written
8
X;4679 5E2.

(d) State the major power, then the rest of the number. Ten septqua four six seven
nine five elv two.

4. 0;67. Again, several possible ways:
(a) Simply state the digits, as is common in the decimal system. Zero dit six seven.
(b) Name the powers individually. Six uncia, seven bicia. Long-winded but legiti-

mate.
(c) Name the highest power, then list the remaining digits. Six uncia seven.
(d) Move the uncial point. Six dit seven uncia, written 16;7.

5. 0;0678. Again, several possible ways:
(a) Simply state the digits. Zero dit zero six seven eight.
(b) Name the powers individually. Six bicia, seven tricia, eight quadcia.
(c) Group the digits; for example, group “678” and recite them as normal, then name

the power. Six biqua seven unqua eight bicia. Confusingly put, but logical and
legitimate.

(d) Name the largest power, then recite the digits. Six bicia seven eight.
(e) Move the uncial point. Six dit seven eight bicia, written 26;78.

Naturally, some of these ways will be more popular than others, just as some ways of reading
decimal numbers are common while others are rare. Ease of use and actual practice will
determine which will become common.

Exercises

Read off the following numbers in at least two ways:
1. 4E.
2. 592.
3. EXEX.
4. 6978 4597;4598.
5. 0;0984 5876.
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TGM stands for Tim, Grafut, Maz, the system’s primary units for time, length,
and mass. These three are particularly representative of the system because these
basic units are derived from real, physical realities that we commonly experience in

the world around us.
The customary measures in Britain and her former colonies have been so hard to break

out of precisely because their measurements are based on real, human-scaled, physical phe-
nomenon. The foot is about the length of a human foot, the inch about that of the last
length of a human thumb, the yard about that of a long pace, and so on. This is what is
good about that system. However, the units don’t relate to each other well; for the most
part, they aren’t arranged with the dozen as the radix. With occasional exceptions (like
inches in a foot, or troy ounces in a troy pound), they use units like twos, threes, and six-
teens; the British continue to use some units with even odder factors, like fourteen (there
are fourteen pounds in a stone, the unit commonly used for weight when using customary
units in England). So while the units themselves are conveniently and human scaled, they
are not easily converted because they are not centered around the radix of the best number
base; that is, the dozen.

The metric system, on the other hand, took a different approach. It regularized the
conversions between the units to the radix of the number system (unfortunately sticking
with the inferior radix, ten), but derived its basic units in such abstract and esoteric ways
that it simply isn’t human-scaled. The meter, for example, is far too long to be used as the
common unit of length; the centimeter, too short; and the decimeter, for some reason or
another, is rarely used. The meter was derived, theoretically, by taking one ten millionth of
one quarter of the circumference of the earth from pole to pole; an interesting exercise, to be
sure, but hardly the basis for the fundamental unit of an entire system of mensuration. Even
if one likes the process, however, the fact remains that the metric system is based irrevocably
upon an inferior radix, ten; we still need a measurement system based on the best number
base, the dozen.

TGM attempts to walk the middle line between these problems. It tries to derive normal,
human-scaled units, and it tries to derive them from universal physical realities that we all
experience every day. As such, for each category of unit, such as “time” or “space,” TGM will
have a corresponding physical reality from which the units are derived. It further maintains a
one-to-one (mathematicians will write this “1 : 1”) correspondence in basic units of each type
(except for the transition to electrical and light units, which due to scale must necessarily
be based on a different ratio), and of course units are converted in factors of twelve. This
allows TGM to be rooted in reality; produce reasonable, human-scaled units; and to conform
to the best possible radix for a human counting system, the dozen.

That explained, let us proceed to the first category of units: time, upon which all others
are based.
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Chapter 3: Time
Fundamental Reality: The Mean Solar Day

Even schoolchildren can reliably recite the ancient mantra: every day, the sun
rises in the east and sets in the west. We watch it happen every day; the sun stays
up longer in the summer, down longer in the winter, but we always see it taking its

appointed rounds, never varying too much, and ensuring that on average all our days are
really equally long.

The mean solar day, the first fundamental physical reality relied upon by TGM, is basi-
cally just the average length of the day. In the units we’re all familiar with (SI seconds), it
comes to d/86,400.002 seconds long; in d/1820, or at least thereabouts, it was exactly d/86,400
seconds long. But it’s important not to think of it in seconds; we’re in TGM now, not SI or
customary units. It’s just the mean solar day; we should think of it as simply 1 mean solar
day long.
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Figure 1: A dozenal clock
in hours, unciaHours, and
biciaHours

It’s easy to see that we already keep time partially in the
dozenal system. We divide our day into two units of a dozen hours
each; we divide each hour into a dozen units of five minutes each,
each of which gets a number on our standard clock. This derives
from our original division of the whole “day” into a twelve-hour
day and a twelve-hour night, two separate and complete units; this
is why we call midnight “midnight,” even though by our current
reckoning it’s the beginning of another day. Even on digital clocks,
the clock resets on ”d/12,” and goes back to zero when it should
hit ”d/24.” The dozenal system offers great advantages even in
this simple sphere. Only one number is needed around the whole
circle; furthermore, to make a time in the afternoon rather than
the morning, one simply adds 10 to it. So when we say 3;4, we
know that we mean twenty minutes after three in the morning; if
we meant in the evening, we’d add 10 to make it 13;4. In other
words, just put a “1” in front to make it an afternoon time. In our decimal system, in
“twenty-four hour time,” 3;4 in the morning becomes d/15:20 in the afternoon. Despite it be-
ing three o’clock, there’s no three in the number anywhere; in the dozenal system, however,
three o’clock in the afternoon is still clearly three o’clock; it’s just got a “1” in front of it.

There’s no reason to eliminate this customary dozenal division of the day, and TGM
therefore retains it. The mean solar day is divided into two; each half is divided into twelve,
which are called “hours.” Each hour is in turn divided into twelve, making unciaHours; these
are equal to five minutes. Each unciaHour is itself divided into twelve, making biciaHours;
these are equal to a little less than half a minute, precisely d/25 seconds. These biciaHours
are divided into triciaHours, and triciaHours into quadciaHours.

There are exactly 20 0000 quadciaHours in one mean solar day. This unit produces the
most reasonably sized daily units when it is used as the base; therefore, it becomes the TGM
fundamental unit of time, and has its own name: the Tim.

Tim (Tm) = 1 quadciaHour = 0.17361s (d/25/144)
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Divisions of the Hour
1 unciaHour 1Hr 5 minutes
1 biciaHour 2Hr 21 seconds d/25 s
1 triciaHour 3Hr 2;1 seconds d/2.083 s
1 quadciaHour 4Hr 0;21 second d/0.17361 s, or 25/144

Table 5: Divisions of the hour and the derivation of the Tim.

Tim Conversions
Common Tims TGM Seconds
1 Hour 1,0000 Tm 1 quadquaTim 3,600
1 Day 20,0000 Tm 2 pentquaTim 86,400
1 Week 120,0000 Tm 12 pentquaTim 604,800
d/30 days 500,0000 Tm 5 hexquaTim 2,592,000
d/365 days 50X0,0000 Tm 5;0X septquaTim 31,536,000
d/366 days 5100,0000 Tm 5;1 septquaTim 31,622,400

Table 6: Common conversions of time units to TGM Tims.

No more minutes, no more seconds, no more milliseconds or half-seconds. Now, we have
Tims. There’s certainly no problem with using our normal, customary units when they
correspond to TGM ones; the hour, for example, is a natural division that TGM retains,
and even employs when choosing its own basic unit. The unciaHour, a unit equal to five
minutes, is also a useful period of time. But minutes and seconds don’t conform to a dozenal
division of units, and so must be scrapped.

That doesn’t mean, though, that there aren’t curious coincidences that will help us
visualize the units. For example, d/100 seconds is equal to 400 Tims, and of course 5 minutes
is equal to 1000 Tims. The triciaTim is almost exactly one-tenth of a millisecond; to be
exact,

1 3Tm = 0.1004694 milliseconds

This means also, of course, that one biciaTim (which is one triciaTim multiplied by a dozen)
is a bit over one millisecond and a fifth:

1 2Tm = 1.2056328 milliseconds

These near correspondences will be very helpful to those who deal in such small periods of
time.

Other common conversions can be stated, as are seen in Table 6 at 15.
It should be clear from this that much more even, easy to deal with numbers come from

defining the time unit from the length of the solar day, rather than defining an arbitrary
time unit and counting up from there.
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Colloquial Time Expressions
TGM Unit Value Colloquial Name Decimal Equiv.
quadquaTim 4Tm Hour d/60 min
triquaTim 3Tm Block 5 min
biquaTim 2Tm Bictic 21 (d/25) s
unquaTim 1Tm Unctic 2;1 (2.083) s
Tim Tm Tick 0;21 (0.17361) s

Table 7: Some Colloquial Expressions for TGM Time Units with Decimal Equivalents

In the last few decades, science has made extreme refinements in the measurement of
time. Previously, the most exact possible definition of time was the number of seconds in
the tropical year of d/1900; now, the most precise measurements come from counting the
number of vibrations given by certain radioactive elements, usually Cesium E1 (Cesium
d/133). These refinements are equally a part of TGM:

Tropical Year 50X5,9905;7291 Tm d/31,556,925.9727 seconds
Cesium E1 3,8658,X173 = 1 Tm d/9,192,631,770 = 1 second

These refinements are extreme, of course, and are relevant only to scientists working in
incredibly sensitive situations; even engineers in the vast majority of cases don’t have to
worry about differences this small. Fundamentally, the TGM unit of time, the Tim, is
simply one quadciaHour, a fraction of the mean solar day.

Must we, however, speak of daily units in this way? When we want to wait for five
minutes, must we say “I am waiting for one unciaHour” or “I am waiting for one triqua-
Tim”? Naturally not; in these matters, as in all others, daily use will doubtlessly give rise
to colloquialisms regarding these commonly used and extremely useful divisions of time. Far
from discouraging these informal “non-coherent units” (for which see below), TGM encour-
ages them; Tom Pendlebury even left spaces in his unit charts to allow TGM’s users to fill
in the gaps with units they have found to be useful. Table 7 on page 16 lists some such
commonplace words for time that some TGM users have adopted. They are based partly on
the clock, of course; the “tick,” for the Tim, the smallest unit which the hand on a TGM
clock “ticks” off.6

So our examples become, “I’ll wait here for a block,” or “I’ll give you two blocks before I
leave without you”; perhaps a race could be summed up as, “My horse won by an unctic”;
programmers could assert that “this program runs almost a full tick faster.” Surely these
terms are just as easy to use as our current ones; yet they are more sensibly and regularly
organized, and are in accordance with a good number base.

There are still other units of time with which we are familiar, and which are an unavoid-
able part of life on earth. Years, months, and so on continue to exist. But they are not part
of TGM; they are non-coherent or auxiliary units, units which exist and will unquestionably

6A visual example of such a clock can be found at http://gorpub.freeshell.org/dozenal/blosxom.
cgi/clock.html.

http://gorpub.freeshell.org/dozenal/blosxom.cgi/clock.html
http://gorpub.freeshell.org/dozenal/blosxom.cgi/clock.html
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be used for the foreseeable future, but which do not fit into the coherent system which con-
stitutes TGM. This is no matter; they can be used just as they are now. These time periods
are not even numbers of units in either of the currently dominant systems, either.

Some such units, however, will need to be adapted for use with TGM. For example, we
currently group years into groups of ten, called “decades.” However, these decades are not
all the same length. Some contain two, some three leap years, meaning that some are longer
than others. Because leap years fall due every four years (more or less), and four is not a
factor of ten, decades cannot regularly contain equal numbers of them.

But this is dozenal. Rather than the decade, we have the unquennium, a period of
twelve years (“unqua,”, twelve, plus “ennium,” which we already know from our current
word “millennium”). There are three units of four years in each unquennium, meaning that
each unquennium contains the same number of leap years and consequently the same number
of days (2653, to be precise, each four-year unit containing X19). But what of the leap day
which is dropped every hundred years (except every fourth hundred years)? That dropped
leap day actually does not come due every hundred years, but rather every X8 years; as such,
dropping it every 100 (d/144) years, rather than every 84 (d/100) years, is actually closer to
the truth (only 14 years off the actual date, rather than 24 years off). So every unquennium
is the same length, containing the same number of leap days, except when it contains a year
divisible by 100, which contains one less day. Then, rather than have the leap day after all
every 294 (d/400) years, which we do now, we must instead omit another leap day every 800
years, perhaps the fourth year following the year divisible by 800; then we have an average
year length over that period of 265;2XX6 days, which is so close to the correct figure of the
tropical year as to make no real difference.7 While the current decimal scheme is inaccurate
by 0;00063 days per year, the above-outlined scheme is inaccurate by only 0;00003 days per
year. Both of these errors are tiny; but the above scheme’s error is tinier, adding up to only
a day every 2400 years.

So, to sum up: a leap year every four years, except when the year is also divisible by 100,
and except for the fourth year following a year divisible by 800 (in other words, we omit two
leap days in a row). Simpler, yet equally or more accurate; this is the story of TGM and the
dozenal system.

So to talk about these longer periods of time, we can discuss unquenniums rather than
decades, biquenniums rather than centuries, triquenniums rather than millenniums; or, if we
prefer, simply unquaYears, biquaYears, and triquaYears. (A unciaYear, of course, is roughly
one month.) Indeed, any of the powers of unqua can have the -ennium suffix added to it
to indicate that number of years (as we already do, irregularly, in decimal, in words like
“millennium” and “bicentennial”).

In accordance with normal practice in other fields, a complete and exact record of a given
time can be given by simply writing in the largest units followed by the smaller ones until
we reach Tims. For example, this moment I’m writing this right now can be written:

11bE6y8m22d10;8hr

7This general scheme I found spelled out briefly at Thoughts on the Leap Year at http://www.
dozenalsociety.org.uk/apps/leapdays.html. It is also explained in Robert Davies, A Duodecimal Cal-
endar, 3E The Duodecimal Bulletin 8 (1184).

http://www.dozenalsociety.org.uk/apps/leapdays.html
http://www.dozenalsociety.org.uk/apps/leapdays.html
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Which, in long form, is 11 biquenniums, E6 years, 8 months, 22 days, and 10;8 hours. (A
lunch break.)

That is the TGM treatment of time; let’s now try a few exercises to flex our TGM muscles
before proceeding.

Exercises

1. Write the following times in dozenal numbers of hours:
(a) A quarter to eight in the morning;
(b) 08:50 hrs;
(c) Five past two in the afternoon;
(d) 22:40 hours;
(e) 22 1/2 minutes past five in the morning.

2. Hong Kong time is onezen four hours (sixteen) ahead of California. Put the following
California times into dozenal, and calculate the respective times in Hong Kong:
(a) 2 a.m.;
(b) 9:30 a.m.;
(c) noon;
(d) 5:45 p.m.;
(e) 11:20 p.m.

3. A job took 3 days, 5 hours, and 20 minutes. How long is this in dozenal
(a) In hours?
(b) In Tims?

Chapter 4: Space
Fundamental Reality: Mean Gravitational Acceleration

From the Tim are derived all other units of TGM. The units involved in measuring space
are no exception.

4.1 Length: The Grafut

Every schoolchild knows the story of Galileo at the Tower of Pisa. For centuries everyone
had held to the common sense idea that heavier objects would fall faster than lighter ones;
e.g., a bowling ball would fall faster than a feather. However, for whatever reason Galileo
decided to climb to the top of a tower and actually try it, surprising many people with his
result. Both a heavier ball and a lighter ball fall at the same speed; indeed, they even speed
up as they fall at the same rate. This is due to what Newton would later call gravity.

Gravity exerts an acceleration on everything. All objects in the universe (that is, ev-
erything which contains matter, or has mass) are gravitationally attracted to one another.
This acceleration varies, of course, depending on the size of the objects being attracted to
one another and the distance between those two objects. So, while the pen on my desk is
gravitationally attracted to my physical mass, that mass just isn’t big enough to make the
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Common Distances in Grafuts
Mean distance from Earth to Moon 3 8Gf
Lightyear 2 13Gf
Radius of the electron 1 11Gf
Radius of geosynchronous orbit 4 7Gf
Ten times the polar diameter of Earth 1 8Gf

Table 8: Common distances as measured in Grafuts.

pen actually move. Of course, both my own mass and that of the pen are gravitationally at-
tracted by the earth, which is such an enormous mass that it overrides all other gravitational
forces on its surface.

The earth is so huge, in fact, that we have to get pretty far away from it to make
any appreciable difference in its pull on us. Nevertheless, even on the surface of the earth
differences in the pull of gravity are sometimes large enough to be measured. Gravity pulls
harder when deep in a valley than when high on a mountain; it pulls lighter when on the
equator than when at the poles. In terms of actual human experience of gravity, these
differences are far too minute to have any effect on what we do or what we build. However,
the fact remains that the pull of gravity on the surface of the earth is a range, albeit a very
small one. So when we speak about the pull of gravity, we are generally referring to the
average within that range, an average we call the mean acceleration of gravity.

In the common system, this mean acceleration caused by gravity’s pull is measured as
32.1741 feet per second per second; in metric, it is measured at 9.80665 meters per second
per second. This metric number is so close to ten, the base of the metric system, as to be
intensely aggravating; in very loose work, sometimes it is even rounded to ten, but while it’s
close it’s still far enough away that rounding to ten introduces serious error.

If we use Tims rather than seconds, we find that the mean acceleration of gravity is
about E

5
8 inches per Tim per Tim, or a little under 26 centimeters per Tim per Tim. In

other words, the speed of a falling object increases a little less than a foot per Tim for every
passing Tim. TGM takes this length and makes it the unit of length for the entire system.
It is called the Gravity Foot, or more commonly the Grafut; its abbreviation is Gf.

We’ve already noted that gravity’s acceleration varies very slightly over the surface of
the earth, even though that variation is too minute to make much, if any, difference to us
who live upon it. However, modern instruments are very accurate and can detect even these
slight differences, and this is a good thing because it provides us with a range of figures for
the accleration due to gravity, all of which are close enough to what we all experience every
day for all our practical work. We can then select which of those figures is most convenient
for the rest of our system, and which of those figures has been most accurately measured to
ensure that we get the most precise value available, while still basing our unit of length on
the mean acceleration of gravity; that is, on the figure which is so close to what we all know
on a daily basis as not to make any difference.

As it happens, lots of natural phenomena come pretty close to exact figures when mea-
sured in Grafuts, as seen in Table 8 on page 19.
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These are all approximations, of course. However, the last of them (ten times the polar
diamter of Earth) is so close that, if we just say that 1 8Gf is equal to that distance, the
length of the Grafut falls within the range of mean acceleration of gravity that we discussed
earlier. This is very useful because the polar diameter of Earth has been measured extremely
accurately; this accuracy will, in turn, rub off on our Grafut. So, if we consider ten times
the polar diameter of Earth to be 1 8Gf, we can define the Grafut with great accuracy:

Grafut (Gf) = 0.295682912 m = 0.970088296 ft = 11.64105955 in

If all this sounds extraordinarily convoluted, consider how the meter was defined. Originally,
it was intended to be one ten-millionth of one quarter of Earth’s circumference. The Earth’s
circumference was calculated by measuring from Paris to Barcelona and then extrapolating
from that. Naturally, this initial measurement was wrong, and consequently the benefits from
the measurement being a fraction of Earth’s circumference, if ever there were any, were gone.
However, by then the meter was firmly established by force of law, and after having been
forced by law to change to metric nobody was in the mood to change again. So practically,
the meter was defined as the length of a piece of platinum bar in a vault somewhere in Paris,
a totally arbitrary measurement that people went along with not because it made any sense,
but because so many people were already doing it. In 1193, that platinum bar was measured
with a laser; this resulted in the meter being defined in terms of the speed of light, which
was declared to be d/299,792,458 meters per second. This is quite precise, but hardly any
simpler than the process we’ve followed here.

After a certain number of significant digits of accuracy, of course, further refinement is
an exercise in gymnastics and nothing more; a neat display of our measuring acumen, but
totally without effect in the practical world. However, since there’s certainly no harm in
such refinements, TGM can also define the Grafut in terms of the velocity of light:

Velocity of light = 4XE4 9923;08 Gf/Tm

Again, though, this is just a more refined description of what the Grafut already is, not a
determination of it. It’s nice to know the length of the Grafut with such precision, but in the
end it’s really just the acceleration due to gravity, a quantity that we all experience every
day and every where, nothing more and nothing less.

So what does all this mean, practically, for the TGM system of measurement?
It means that measurements of length are done with the basic unit of the Grafut, which

is slightly shorter than the standard English foot, about equal to 29.5 centimeters; this is
very nearly exactly the length of standard, metric-sized A4 paper. The Grafut is divided,
of course, into unciaGrafuts, each of which is a short inch; each unciaGrafut is divided
into twelve biciaGrafuts, which are a bit more than 2 millimeters long. This can continue
downward indefinitely, of course; the hexciaGrafut, for example, is just under a tenth of
a micron. For another example, the pentciaGrafut (5Gf) is just a touch bigger than one
micrometer (a micron is 0;X122 pentciaGrafuts), making it a convenient length for measuring
cell size (for example, the average human cell is about 8;4E9E 5Gf, or X microns).

In the printing trade, too, TGM yields units that are almost identical to the traditional
units involved. The printer’s point, for example, is 1

72.27 of an inch, and a pica is twelve
points; an awkward number, to be sure, when related to the inch (which is why Postscript
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Colloquial Distance and Length Expressions
TGM Unit Value Colloquial Name Decimal Equiv.
Gf 1 1Gf Gravinch (Unch) 0.9701 in; 2.4640 cm
Gf 3 1Gf Gravpalm 2.9103 in; 7.3921 cm
Gf 4 1Gf Gravhand 3.8804 in; 9.8561 cm
Gf 3 Gf Gravyard (Trifut) 0.9701 yd; 0.8870 m
Gf 3 3Gf Gravmile (triquaTrifut) 0.9524 mi; 1.5328 km
Gf 2 3Gf Gravklick (Gravkay) 1.0218 km; 0.6349 mi

Table 9: Some Colloquial Expressions for TGM Length and Distance Units with Decimal Equiva-
lents

defined the “big point” as simply d/ 1
72 of an inch), but useful for printers, who didn’t deal with

inches much, but simply with points and picas. This led to approximately six picas to the
inch (exactly six to the inch, with Postscript’s big points). In dozenal, 1

72.27 equals 0;01EX;
when put into inches, 0;01EX inches comes out very closely to 0;002 Grafut (or, more simply,
two triciaGrafuts; the exact number, worked out to four places, is 2;0793 triciaGrafuts). This
yields some startlingly convenient measures:

TGM point = 2 3Gf; TGM pica = 2 2Gf; 6 picas = 1 1Gf

A single printer’s point is almost exactly equal to 2 3Gf; twelve of these, almost exactly equal
to a printer’s pica, is 2 2Gf; this means that there are six picas in a TGM “inch” (really,
an unciaGrafut, 1Gf). So developing new printers’ units is a simple matter of rounding off
0;0020793 Grafut, or about 0.00036354 inches (0.00923395 millimeters), and making that
the TGM point, equal to two triciaGrafuts. This rounding is tiny enough that we need not
trouble ourselves with it; for most practical purposes, we can use TGM points and American
printer’s points interchangeably.

All in all, this is a remarkable correspondence, and means that printers and typesetters
should have no problems adjusting to TGM.

For larger distance, the quadquaGrafut (4Gf) works quite nicely. It is a little less than
four miles (3;98 mi) and a little more than six kilometers (6;17 km). For those who desire
more familiar lengths, there is the triquaGrafut (3Gf), which is a little less than a third
of a mile (0;398 mi), and a little more than half a kilometer (0;617 km). Three of these
are a short mile (0;E5), dubbed a Gravmile; two of these are a long kilometer (1;03 km),
dubbed a Gravklick or Gravkay. These simple relationships allow for easy conversions of
travel distances and ease the transition to the new system.

4.2 Area and Volume: The Surf and the Volm

The Grafut, one of the three primary workhorses of the TGM system (we’ve already met the
Tim; the third is the Maz, rounding out the three which give TGM its name), also yields
units for area and volume. While the metric and traditional systems simply use the squares
and cubes of their length systems (though the liter is theoretically a cubic decimeter, its use
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is now discouraged and it is not a standard unit of SI), TGM provides special units with
definite values and independent names.

Area is measured by the square Grafut, the Surf (Sf). Obviously, a Surf is a little less
than a square English foot (more precisely, one Surf equals 0;E362 ft2). An unquaSurf (1Sf)
is quite close to a square yard, and a bit larger than a square meter (1;07 m2).

Surf (Sf) = 0.9410713018 ft2 = 0.0874283848 m2

Volume is measured by the cubic Grafut, called the Volm (Vm). That makes it almost equal
to a cubic foot (about E/10 ft3), and a little more the twenty-five liters (d/25 L). A Volm of
water weighs about halfway between six imperial gallons and six customary gallons.

Volm (Vm) = 0.9129222555 ft3 = 25.8503556494 L

Volume is a confused topic in both metric and customary measures. Metric attempts to define
the liter as equivalent to a one cubic decimeter; however, SI discourages the use of the liter,
and the fact that one cubic decimeter of water consists of one kilogram of mass while being
equal to a prefixless liter is beyond bizarre. Customary measurements are cobbled together
as normal, equally chaotic as metric but at least honestly so. Ostensibly, a customary pint
weighs one pound; as the old rhyme goes, “A pint’s a pound the world around.” Thanks
to a British reform in Victorian times, however, a pint’s not a pound the world around;
indeed, to those following British Imperial measures, “A pintful of water’s a pound and a
quarter.” Of course, neither of these have any relation to the cubic foot, which is normally
used to measure volume; not to mention that volumes of wet and dry goods are measured
using different units. All in all, the TGM system is a great simplification, not to mention
rationalization, compared to both systems.

TGM’s Volm ends up being a remarkably convenient unit, with many remarkably conve-
nient subdivisions. One example is drink sizes and similar necessities. SI has proven totally
inadequate in this field; people in metric countries routinely refer to the half-liter (a depre-
cated unit that SI rejects) as a “pint” for ordering drinks, for example, utilizing a rejected
unit to approximate a truly convenient size. However, in TGM, 3 2Vm equals just a bit less
than the imperial pint, and a bit more than half a liter. (A liter, of course, is “a liter bit more
than a quart.”) Pendlebury suggests making this its own unit, and calling it the “Tumblol,”
and some have come to call it the “Pintvol.” It can be combined in precisely the same way as
our current pints are combined into quarts, which are combined into gallons, to approximate
these sizes which have been found so convenient for practical work for so long. Two Tumblols
(6 2Vm) is one Quartol, which ends up being a little less than an imperial quart, a little more
than a customary quart, and a little more than the old liter. Four Quartols (20 2Vm, or 2
1Vm) is the Galvol, which approximates the imperial and customary gallons closely enough
to mimic their convenience, and which is equal to about four and a third liters. And, of
course, the Oumzvol (“Oumz” pronounced to rhyme with “ounce”) is 2 3Vm, of which there
are 16 (onequa six) in the Tumblol (or Pintvol).

It works for smaller divisions, as well. A teaspoon, which is often approximated in metric
as 5 milliliters (a pretty close approximation, as the true value is 4;E190 ml), is almost
exactly 4 4Vm. This means that 10 4Vm, or 1 3Vm, is very close to one tablespoon (which
is three times the teaspoon). We are here referring to customary, not imperial, teaspoons
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Colloquial Volume Expressions
TGM Unit Value Colloquial Name Decimal Equiv.
Volm 4 4Vm Sipvol 1.0117 U.S. tsp; 0.0050 L
Volm 1 3Vm Supvol 1.0117 U.S. tbs; 0.0149 L
Volm 2 3Vm Oumzvol 1.0117 U.S. fl. oz.; 0.0299 L
Volm 16 3Vm Cupvol 1.1382 U.S. cups; 0.2692 L
Volm 3 2Vm Tumblol (Pintvol) 1.13818 U.S. pints; 0.538549 L
Volm 6 2Vm Quartol 1.1382 U.S. quarts; 1.077098 L
Volm 2 1Vm Galvol 1.1382 U.S. gallons; 4.308392 L

Table X: Some Colloquial Expressions for TGM Volume Units with Decimal Equivalents

and tablespoons. In metric countries, recipes are often scaled in “cups” or “eating-spoons”
which do not have a standardized size; or they are measured in weights, which necessitates
weighing them out on a scale rather than simply scooping them up with a normal spoon.
TGM is an improvement on both systems.

All in all, the Volm is a very versatile unit which will serve us well. We will see how the
Volm relates to mass and weight when we reach Chapter 5 on page 24.

4.3 Accleration and Velocity: The Gee and the Vlos

Naturally, this measurement of the Grafut also gives us units for accleration and for velocity.
Accleration is measured in Gees, which are simply 1 Gf/Tm2:

Gee (G) = 9.81005 m/s2 = 32.1852 ft/s2

Frequently, when doing calculations involving gravity we speak in “gees” even in the cus-
tomary or metric systems; we simply convert “gees” into these awkward numbers in our
formulas. In TGM, the Gee is the unit of accleration. That means it equals one; to multiply
when it should be divided, or vice versa, or to forget to do either makes no difference in
the final result. This prevents many accidental errors that frequently creep into calculations
otherwise.

Simple motion can be measured either as a vector or as a scalar. When it’s a vector
(that is, when it includes directional information), it’s called velocity; when it’s a scalar
(that is, when it doesn’t), it’s called simply speed. Either way, the unit, the Vlos, is the
same; maintaing the normal 1 : 1 ratio, the Vlos is simply 1 Gf/Tm.

Vlos (Vl) = 1.7 m/s = 5.6 ft/s = 3.8 mph

Tom Pendlebury, the inventor of TGM, calls this a “comfortable walking speed.” Personally,
I think this is optimistic on his part; it is, however, a very manageable brisk walking speed.
Just as the quadquaGrafut and its fractions proved a useful distance for measuring walking,
so also the Vlos is a useful unit for measuring walking speed. TGM is about a rational,
dozenal system of human-scaled units, and the Vlos is another excellent example.
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Figure 2: A speedometer calibrated in Vlos, mi/hr, and km/hr.

Its derivative units are interesting; 8 Vlos is only a little more than 30 mph, while 5 Vlos
is only a little over 30 km/h. If anyone actually uses cassette tapes anymore, 4 biciaVlos is
the speed that the tape has to move to produce comprehensible sound.

The Vlos yields even more interesting units regarding driving speeds. The standard
highway speed limit in North America is typically d/65 miles per hour (“mph,” or, more
correctly, “mi/hr”); this works out very closely to 15 Vlos exactly (more precisely, 15;089X).
15 Vlos is also very close to the standard metric highway speed limit in North America
where SI is preferred; in Canada, for example, it is typically cited as d/100 kilometers per
hour (“kph,” or, again more correctly, “km/hr”). (It comes out to 104.2318 km/hr.) 15
Vlos, then, would provide a very convenient new speed limit for such cases without requiring
people to change their habits much, and without confusing those who have not yet upgraded
to new speedometers.

Even more interesting, d/80 mi/hr comes out as almost exactly 19 Vlos (18;EE94 Vl), so
those desiring a higher speed limit will have an equally convenient figure to argue for.

Further speed correspondeces are that d/15 mi/hr is very close to 4 Vlos (3;E2E6 Vl),
perhaps making a useful speed limit for parking lot travel lanes and narrow alleyways. d/30
mi/hr is only slightly less than 8 Vlos (7;X5E0 Vl), a useful in-town speed limit. Another
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common in-town speed limit, d/25 mi/hr, comes reasonably close to 6;6 Vlos (6;68E2 Vl),
providing another convenient estimation.

All in all, the Vlos is an extremely versatile unit, closely approximating common units in
other systems with human-scaled dimensions of its own. Speed limits are a great example of
this, as our current system of giving speed limits largely in increments of ten miles per hour
could be easily replaced by giving them in whole Vlos, dividing them in half when necessary.
Furthermore, these correspondences make the new units easy to work with, making the
conversion smoother for those still using speedometers of the old system.

Examples

1. A car travels 4;8 4Gf (17.5 mi) in 0;7 Hr (35 min). What is its average speed in
(a) 4Gf/Hr (mph), a. 4;8 4Gf/0;7 Hr = 8 4Gf/Hr 17.5 mi x 60 / 35 min = 30 mph
(b) Gf/Tm (ft/s) b. 4 8000 Gf/7000 Tm = 8 Gf/Tm (17.5 mi x 1760 x 3) / (35 x 60)

= 44 ft/s
(c) Vlos? c. 8 Vlos.

2. A car runs over a cliff X8 Gf (145 ft) high.
(a) How fast is it falling after 10 Tm (2 s)?

When it leaves the cliff its downward velocity is nil. G = 1 Vl/Tm (32.2ft/s2),
and acceleration is ∆v

t
. So after:

10 Tm × 1 Vl = 10 Vl
2 s × 32.2 ft/s = 64.4 ft/s

(b) How far has it dropped by then?
(Av. speed) 6 Vl (Gf/Tm) × 10 Tm = 60 Gf
(Av. speed) 32.2ft/s × 2 s = 64.4 ft/s

(c) How long before it drops in the sea?
Distance equals average speed multiplied by time. In the usual algebraic calcula-
tions, therefore, t =

√
2d
g
.√

X8Gf×2
1Gf/Tm2 = 14 Tm

√
145ft×2
32.2ft/s2 = 3 s

(d) What is its downward speed when it hits the water? v = d
t
, so this is just a matter

of plugging in the numbers, remembering that we’ve just calculated the time it
takes to hit the water above.

X8Gf
14Tm = 8 Vl 145ft

3s = 435 ft/s

Exercises

1. The base of a tank measures 3 Gf x 4 Gf (1 m x 1.25 m); it holds water to a depth of
1;6 Gf (0.5 m).
(a) What is the volume of water in cubic Gf (m3) and also in Volms (liters).
(b) If a pipe empties the tank at 1 biciaFlo (2Vm/Tm) (1 L/s), how long will it take

the tank to empty?
2. A car increases speed from 6 4Gf/Hr to 14 4Gf/Hr (24 mph to 60 mph, or 40 to 100

km/h) in 20 Tm (4 s). What is the acceleration in:
(a) Vl/Tm (mph/s or km/h/s);
(b) Gf/Tm2 (ft/s2 or m/s2);
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(c) in terms of G?

Chapter 5: Matter and Force
Fundamental Realities: The Density of Water and Weight (Force to Mass

Ratio)

Gravity is produced by matter, which is (more or less) anything that we can see
and touch. It is stuff, physical stuff; all matter is attracted to all other matter
through the force of gravity, and we can determine what physical things are matter

and what physical things are not (such as energy) in part by whether they exert a gravita-
tional pull on other matter. Matter occupies space, and so has volume (which we measure
by the Volm8). Volume is simply how much space, in three dimensions, the matter occupies.

But volume only tells us how much space the matter occupies; it doesn’t tell us how much
matter there is. Matter can be packed more or less tightly within a given volume, meaning
that there can be more or less matter within the same volume. Furthermore, gravity pulls
more strongly on larger amounts of matter than on smaller amounts, so the more tightly
the matter is packed, the more strongly gravity pulls on it (for the same volume). The pull
of gravity on something is called its weight; so more tightly packed matter has a greater
weight for the same volume than more loosely packed matter. For example, a Volm of lead
will weigh more than a Volm of aluminum, which in turn weighs more than a Volm of water
(which is why it sinks).

The amount of matter in an object is called its mass; how tightly packed that matter is
is called its density; and (as already seen) how hard gravity pulls on an object is called its
weight. All of these quantities are inextricably intertwined; as such, we must often define
them in terms of each other. Nevertheless, we’ll approach each in turn; simply remember
the meaning of the terms, and there should be no trouble.

Force is the subject of Newton’s famous second law, written mathematically as F = ma.
In other words, force is the product of mass and acceleration. It is, obviously, dependent
upon the unit of acceleration (the Gee, which we have already seen9), as well as upon the
unit of mass (which we shall see shortlyX).

There is also the matter of pressure, which is the amount of force acting per unit area.
This is likewise dependent upon mass and force, and will be addressed in turn.

5.1 Mass: The Maz

Water is by far the commonest liquid on the planet, and it’s an easily manipulated fluid,
easily contained and measured; therefore, it’s convenient to use water as a base substance
for determining various measurements, mass and density included. Mass, of course, depends
upon density; however, density is defined partially in terms of mass. Consequently, it makes
most sense to address mass first.

8See supra, Section 4.2, at 1E.
9See supra, Section 4.3, at 21.
XSee infra, Section 5.1, at 24.
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Mass is measured by the Maz, which is the mass of 1 Volm of pure, air-free water under
a pressure of one standard atmosphere and at the temperature of maximal density (which is
3;E915◦C).

Maz (Mz) = 25.850355565 kg = 56.99028287 lb avoir

This is within a hair’s breadth of 49 pounds, and only a little less than 22 kilograms. The unit
is large in comparison with similar units in other systems, but it has at least one distinct
advantage over them: it maintains the 1 : 1 ratio between basic units. In comparison,
consider the units of SI. The basic unit of length is the meter, and consequently the basic
unit of volume is the cubic meter; however, the original basic unit of mass was the gram,
which was derived from the mass of one cubic centimeter of water. Now the basic unit
of mass is the kilogram, which has a prefix meaning “thousand.” However, the kilogram’s
volume is about that of a cubic decimeter, which is only one thousandth of a cubic meter.
Determining mass based on volume and density thus often introduces small errors which can
end up being serious later on. We have no such difficulties in TGM.

In any case, smaller divisions of the Maz are often extremely conveniently sized. For
example, massing people in unciaMaz might be convenient; the unciaMaz is about four
pounds and one unqua ounces. The biciaMaz comes to 61

3 ounces, which is about 130
grams, a convenient size for massing smaller things; a can of beans, for example, might be
two biciaMaz (2 2Mz). The triciaMaz makes a good unit for spices and other ingredients
generally added in small amounts; it totals just over half an ounce (specifically, 0;63EX oz).
For larger measures, the megaton is 1;0E56 septquaMaz (7Mz) (referring here to 1,000 times
the metric ton).

For daily measures, however, such as massing persons, an auxiliary unit is probably
appropriate: for example, the Poundz, or Kilg.

Poundz (Lbz) (Kilg (Klg)) = 3 2Mz = 16;EE64 oz; 0;6567 kg

It’s worth noting that this is almost exactly 17 ounces (d/19), or only three ounces more
than a normal customary-imperial pound. It’s also only a little bit more (just over three
unqua grams) than the “metric pound” or a half kilogram, which is commonly used in metric
countries for produce and similar items.

The Poundz is made up of 16 (onequa six) Oumz (pronounced to rhyme with “ounce”),
another auxiliary unit that comes quite close to traditional values:

Oumz (Oum) = 2 3Mz = 1;07E8 oz; 25;E048 g

It’s also worth noting that 16 Oumz to the Poundz is much better than our current sixteen
ounces to the pound; 16 is a dozen and a half, a very convenient number in reference to our
base, something which sixteen simply doesn’t share with ten.

The astute reader will have noticed a striking similarity between the Oumz and the
Poundz and the Tumblol and Oumzvol found in Table X on page 21; namely, that the larger
units of 3 bicia are made up of 16 smaller units of 2 tricia. This is because of the 1 : 1
correspondence of TGM units; any substance of a density similar to water will have the
same mass in Maz as its volume in Volm. So while “a pint’s a pound the world around,” the



26 Chapter 5. Matter and Force

TGM system works better, as there’s no need to remember little rhymes about such things.
For water or substances of similar density, the volume is the mass. This makes it quite easy
to simply change “vol” to “mass” in the names of these auxiliary units and refer to amount
of substance just as easily as to the space that it takes up.

So, for example, an Oumzvol of water masses an Oumzmass (which we better know as
just the Oumz), and in turn weighs an Oumzweight (2 3Mag, a unit which we’ll meet in
a moment); a Pintvol of water masses a Pintmass (a Poundz), and weighs a Pintweight (2
3Mag); and so forth. These auxiliary units work just as well as the basic units do (whereby
one Volm of water masses one Maz and weighs one Mag) due to TGM’s insistence on a 1 : 1
relationship wherever possible.

Of course, our definition of the Maz includes a reference to density, for which we have
not defined a unit. To density, then, we now proceed.

5.2 Density: The Denz

Density, again, is how tightly packed a mass is into a given volume. As such, it combines
mass and volume into a single unit. Because TGM always maintains a 1 : 1 correspondence
between basic units, density is no exception. The Denz is simply one Maz per Volm (1
Mz/Vm).

Denz (Dz) = 999.972 kg/m3 = 62.43 lbs/ft3

SI has no unit of density, using the composite unit of kilograms per cubic meter instead.
Ostensibly, this was based on the density of water; however, as is easily seen from our
definition of the Denz, it comes to an awkward number of kilograms per cubic meter, very
close to an even thousand, yet still far enough away that rounding off can introduce significant
errors.

This strange off-by-a-little error in SI also explains the deprecation of the old liter. The
liter was, theoretically, a cubic decimeter, and was supposed to be the unit of volume in
the metric system. (Why not the cubic meter, which would be more logical, and which was
later adopted by SI?) However, at the time alterations in density based on temperature were
not clearly measured, and consequently the volume of one kilogram of water at maximal
density is not one cubic decimeter, but rather 1.000028 cubic decimeters. Since the liter has
been deprecated, this is not much concern now; it does, however, explain certain differences
in conversions between TGM units and metric units based on the kilogram as opposed to
metric units based on the liter. Nevertheless, the entire issue is excluded from TGM itself;
we need not bother with such business when we’ve adopted the new system.

5.3 Force: The Mag

Newton’s famous three laws of motion includes the definition of force in his second law:
force is the product of mass and acceleration, written mathematically as F = ma. A simple
formula, it’s immensely useful in all normal applications of physics and engineering. The
original metric unit of force (in the “cgs” system) was the dyne, or one gram-centimeter
per second squared (g · cm/s2). This has since been supplanted by the newton, which is
one kg ·m/s2. In the customary system, “poundals” are used, which equal pounds-feet per
second squared (lb · ft/s2).
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As these units make clear, force is what is necessary to accelerate a certain mass a certain
amount. In TGM, as always, we maintain a 1 : 1 correspondence between these units, so
the unit of force will be one Maz-Grafut per Tim squared (Mz ·Gf/Tm2), or one Maz-Gee
(Mz ·G), which is the same thing. This gives us the unit of force, the Mag:

Mag (Mg) = 253.5932659 N = 1834.246667 pdl

It is the force required to accelerate one Maz by one Gee; that is, it is the force exerted by
gravity upon an object of one Maz. Stated the other way, it is the force required to prevent
one Maz from falling to the earth (strictly speaking, by holding something up against the
force of gravity one is accelerating it equally to gravity, but in the opposite direction).

Because of the 1 : 1 correspondence in basic units in TGM, the mass of an object which is
on the earth will always be equal to its weight; that is, gravity will pull on a mass measured
in Maz with a force of equal quantity measured in Mags. So a small female of 2 Maz mass
will also have a weight of 2 Mags (provided she is on the earth). As this explanation suggests,
weight is the force by which an object is pulled by gravity; mass, on the other hand, is the
amount of matter an object has. The two are very intimately related, but they are not the
same thing.

For example, while mass and weight are equal (in TGM) while on Earth, they are not
equal while on the moon. On the moon, gravity pulls only about a sixth as hard as it does
on earth, because the moon has only about a sixth of the mass as earth. Therefore, our
2-Maz woman might weigh 2 Mags on earth, but she weighs only 0;4 Mags (one sixth of 2
Mags) on the moon. In either place, though, her mass is still 2 Maz. This is an important
distinction to keep in mind when dealing with these units. The Maz is mass, the amount of
matter in an object; the Mag is force, which includes weight, the force with which gravity
pulls an object.

The old systems, however, do not clearly distinguish mass and weight. Both have separate
units for the two; the metric system has the kilogram and the newton, while the customary-
imperial system has the pound and the poundal. However, both the kilogram and the pound
are often used to express weight as well as mass, which leads to confusion. When these
two units are used in this way, an “f” is usually appended to their abbreviations; so we
have kilograms-force (kgf) and pounds-force (lbf), rather than simply kilograms (kg) and
pounds (lb). For these units, rather than kg ·m/s2 and lb · ft/s2, we have kg · 9.8m/s2 and
lb · 32.2ft/s2. In other words, just as F = ma, W = mg, giving us some very different
units. This is why one kilogram of mass doesn’t weigh one newton: because the units don’t
have TGM’s 1 : 1 correspondence. Instead, one kilogram of mass weighs one kilogram-force,
needlessly bifurcating the system.

These weight units correspond to the Mag as follows:

Mag (Mg) = 25.85931648 kgf = 57.01003812 lbf

TGM fortunately avoids this entire issue. Weight will always be equal to mass when they
are measured in Mags and Maz, unless some additional force is being applied. When, for
example, our 2-Maz woman is going up in an elevator, she weighs a bit more; that is, she
really is heavier, even though her mass (the amount of matter she contains) is unchanged.
When she’s being launched in a spaceship, she is considerably heavier; that is, she weighs
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considerably more in Mags than she did before. But her mass remains the same. When she
is falling, there is nothing opposing the acceleration of gravity, so she is weightless, just as
she would be if in orbitE; but her mass is still 2 Maz, just as it was before.

Weight is with us every day, and is more or less constant over the whole world. It
therefore makes sense for weight and mass to be equivalent while on the earth, while still
maintaining the real distinction between them. TGM does exactly that.

5.4 Pressure and Stress: The Prem

Related to force is pressure or stress, which is the amount of force applied per unit area.
Most commonly we refer to air pressure or water pressure. As an example, atmospheric
pressure is about 12;8 pounds-force per square inch (lbf/in2, or psi), or 4 X779 newtons per
square meter (N/m2), which are typically called “pascals” (Pa). The pascal, obviously, is an
extremely small unit, and commonly we speak of kilopascals (X3; abbreviated “kPa”).

In TGM, maintaining as always the 1 : 1 correspondence, the unit of pressure is one Mag
per Surf (1 Mg/Sf):

Prem (Pm) = 2900.582763 N/m2 (Pa) = 0.42069339 lbf/in2

Remember, of course, that the Mag is simply Mz ·G, or more verbosely Mz ·Gf/Tm2, which
opens up many easy applications of the Prem. For example, because one Volm of water
weighs exactly one Mag, one Grafut of water exerts a pressure of one Prem at its bottom.
Hydraulic engineers would say that the pressure of water in Prem is equal to the head of
water in Grafuts. The same works for any other liquid, once we’ve multiplied by that liquid’s
density in Denz. So a column of mercury 2;7 Gf high presses downward at 2; 7×11; 7 = 2E; 11
Pm.

The astute observer will note that 2;7 Gf is approximately the same as 26 inches or
538 millimeters, which just happens to be very close to the current measurements for the
pressure of the “standard atmosphere” (that is, normal air pressure on Earth’s surface) in
the current system. Air pressure at sea level varies according to many factors, especially
humidity; however, it only varies within a specific range of possible values. As an example,
originally the standard atmosphere was defined as the pressure of 26 inches of mercury;
during metrification it was rounded off to the nearest centimeter, namely 64; and now it
is quoted in millibars, which is one hundredth of one kilopascal (or one dekapascal), to
give the value 705;3. All of these vary more or less; all of them are realistic as “standard
atmospheres,” because they fall well within the range of normal atmospheric pressure at sea
level. If we convert that millibar figure to Prems, we wind up with 2X;E237 Prem; this is so
close to 2E that rounding up to 2E only makes a difference of less than two millibars, putting
it also well within the normal range of qualifying values for the “standard atmosphere.” This
gives us another non-coherent unit in TGM:

Atmoz (Atz) = 1015.203963 mb / 761.465 mm = 29.978 in

That’s millimeters and inches of mercury, of course. In terms of TGM, the Atmoz is simply
2E Prem.

EThat is, she is in free fall, which isn’t quite the same thing but has the same effects as true weightlessness
does. The distinction is not relevant here.
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At Pm At Pm At Pm At Pm At Pm At Pm
1/2 15;6 1/6 5;X 1/X 3;6 1/14 2;23 1/20 1;56 1/28 1;116
1/3 E;8 1/7 5 1/10 2;E 1/16 1;E4 1/23 1;368
1/4 8;9 1/8 4;46 1/12 2;6 1/18 1;9 1/24 1;3
1/5 7 1/9 3;X8 1/13 2;4 1/19 1;8 1/26 1;2

Table E: Some common fractions of the standard atmosphere in Prem.

But isn’t 2E a rather clumsy number for such a commonly used figure as the standard
atmosphere? This can be answered in two ways. The first is to reply with another question:
clumsy compared to what? Compared to the thirty of 26 inches of mercury? Or clumsy
compared to 64 centimeters of mercury? Or 705;3 millibars? 2E at worst is certainly no
clumsier than these, so saying that it’s clumsy doesn’t given any value for comparison.

Furthermore, 2E is not only highly divisible, it is divisible by seven and five (since it is
their product), the two numbers which the dozenal system doesn’t normally handle well. A
few examples of such common, easily handled divisions are listed in Table E on page 29.

The Prem is also the standard unit of stress, which is the average force per unit area (the
pressure) on a deformable body on which internal forces are acting. It’s especially important
in engineering. As an example, a steel bar with one biciaSurf (1 2Sf) cross-sectional area
undergoing a force of one unquaMag (1 1Mg) endures a stress of one triquaPrem (1 3Pm).

Examples

1. A bar of iron measured 2 x 3 x 40 1Gf (d/50mm x d/75mm x 1m). What is its mass?
The density of iron is 7;E Dz (d/7900 kg/m3).

200 3Vm × 7;E Dz = 13X0 3Mz = 1;3X Mz
0.00375 m3 × 7900 kg/m3 = 29.625 kg

Note here that uncia × uncia × uncia = tricia.
2. What is the pressure of water on the floor of the tank in Exercise 1, Chap. 4 (found

on page 23)?
Vol. of water = 16 Vm
Weight 16 Vm × 1 Dz × 1 G = 16 Mg
Base area = 10 Sf
Pressure 16 Mg / 10 Sf = 1;6 Pm
Vol. of water = 0.625 m3

Weight 0.625 m3 × 1000 kg/m3 ×
9.80665 m/s2

= 6129.156 N

Base area = 1.25 m2

Pressure 6129.156 N / 1.25 m2 = 4903.325 N/m (pascals)
Note the shorter method of solving this question in the TGM system; because of the
1 : 1 correspondence, 1;6 Gf of depth means that the pressure at the base will be 1;6
Pm.

3. A man “weighs” 3 Mz (d/75 kg) and is sitting in a car which decelerates from 14 Vl to 8
Vl (d/100 to d/50 km/hr) in 16 Tm (3 seconds). By what force does he feel himself thrust
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forward? (In English we “weigh” usually to measure mass, not weight. Remember the
distinction explained in Section 5.3 on page 26. Mass is the amount of matter in an
object; weight is a measure of force.)

14−8Vl
16Tm = 4 / 9 = 0;54 G
Force = 3 Mz × 0;54 G = 1;4 Mg
100−50km/hr
3s×3600s/hr = 50 / 10,800 = 4.63 m/s2

Force = 75 kg × 4.63 m/s2 = 347 N

Exercises

1. A bar of aluminum “weighs” 0;4 Mz (2 kg). The density of aluminum is 2;8 Dz (d/2700
kg/m3).
(a) What is the volume of the bar?
(b) If it is 2;3 Gf long (d/750 mm), what is its cross-sectional area?

2. A “weight” of 3 Maz (d/75 kg) is on one end of a piece of rope, which passes over a
large pulley. A 5 Mz (d/125 kg) “weight” is on the other end, and at first held from
descending, then let go. What is the acceleration of the system? Formula: a = F/m.
Hint: Mass to be moved is the sum of the masses (ignore the rope and pulley), but
driving force is their difference multiplied by G.

3. A man “weights” 3;26 Mz (d/83 kg) and each of his feet covers an area of 0;36 Sf (0.0255
m2). What is the pressure in Prems (N/m2) on his feet when standing evenly on both?

4. A hotwater tap in a kitchen is 14 Gf (4.7 m) lower than the surface of the water in the
filler tank in the house loft. What is the pressure in Prems (N/m2) at the tap?

5. A metal bar of cross-section 7 3Sf (0.6 in2) was loaded till it broke. This took 3 2Mg
(10.5 tons). What is the tensile strength of the metal in Prems (lb/in2)?

6. What is the approximate equivalent in avoird. (metric) of
(a) the unciaMaz,
(b) the biciaMaz,
(c) the triciaMaz, and
(d) the quadciaMaz?

Chapter 6: Work, Energy, Heat, and Power
Fundamental Realities: Absolute Zero and the Specific Heat of Water

Work, energy, heat, and power are fundamentally interrelated concepts; con-
sequently, in TGM their units are likewise interrelated. Like all basic units in
TGM, they maintain a 1 : 1 correspondence to one another, facilitating conver-

sion and other routine chores. First we will address work and energy; then we will move on
to heat; and finally we will discuss power.

6.1 Work and Energy

Work is not only something that we have to go to every day to make our money; it is also a
scientific term with a very specific physical meaning. Work is force over a distance. Take, for
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example, an automobile. Automobiles are very large, and it therefore takes a large amount
of force to move them. When your automobile breaks down, you might have to push it.
You can push until the veins pop out of your neck, but if you don’t actually move it, you’ve
done no work. When you have moved it, though, you’ve done a lot of work, even if you’ve
only moved it a tiny distance. It is, in other words, simply force exercised over a distance;
the same unit is used for measuring the amount of energy required to do a given amount of
work.

Because work is force over distance, TGM’s unit of work is Mags over Grafuts:

Werg (Wg) = 74.983195487 N·m = 55.3 lbf·ft

The Werg is used to measure work and energy of whatever kind.
The 1 : 1 correspondence which is TGM’s strength serves it in good stead here, as well.

For example, raising six Maz to a height of eight Grafut requires fourqua Wergs of work.
This is also called kinetic energy; that is, it’s the energy required to propel the item upward,
as well as the amount of work that was actually done. The object has potential energy while
it is being held up; namely, the potential energy which would become work when it falls.
The amount of this potential energy is equal to the work done to hold it up, fourqua Wergs.
When that same object is dropped, fourqua Wergs of work is done on it by the earth to
bring it to the ground.

This equivalency between energy and work is not unique to TGM. Work is really just
a specific type of transfer of energy; it is unsurprising, then, that levels and changes of
energy can be measured by means of the same unit that measures work. Other types of
energy transfer cannot be measured in this way; but when energy is transferred resulting in
a change of actual position, work has been done, and Wergs are what is used to measure it.

It’s all very simple; and that is all there is to work and energy in TGM.

6.2 Heat

We all know what heat is; it’s what comes from the sun on a warm summer day, and what
comes out of the barbecue grill on the Fourth of July. Physically, however, heat is a bit
more complex, but still easy enough to understand: it’s any transfer of energy to a body by
anything other than work actively performed on it.

Heat—energy transferred from one body to another without the performance of work—
should not be confused with temperature, which is a way of measuring how much heat is
present. Strictly speaking, temperature is defined as the concentration of kinetic energy
relative to heat capacity, but we needn’t worry ourselves too much with that right now. For
now, it is enough to know that heat is energy, while temperature is something else. Energy
is measured, as we’ve seen, in Wergs or joules (newton-meters); temperature is measured
in other units. Traditionally, temperature has been measured in degrees, either Fahrenheit
or Celsius. Scientifically, it is measured in kelvin, Celsius-sized degrees with a zero point at
absolute zero, or rankine, Fahrenheit-sized degrees with the same zero point.

Traditionally, heat has been measured in quantities necessary to raise a certain quantity
of water by a certain unit. The most common units are displayed in Table 10 on page 30.
This was designed to make the specific heat of water equal to one, but it yielded problems
of its own.
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Traditional Units of Heat Measurement
Unit Quan. of Water Temp. Unit
British Thermal Unit (BTU) 1 lb 1◦F
Centigrade Heat Unit (CHU) 1 lb 1◦C
Old Calorie (cal) 1 g 1◦C
Cal or kcal. 1 kg 1◦C

Table 10: Traditional units for heat measurement based on raising a quantity of water through a
unit of temperature.

The specific heat of a substance is the amount of heat required to raise that substance
through a given unit of temperature. So by definition, measuring heat in units formed as
above gives the specific heat of water as one. However, it gives no idea as to how much
energy is required to accomplish this raising of temperature, which is usually exactly what
we need to know. Furthermore, it ignores one of the vagaries of specific heat: namely, that
the energy required rises the closer one gets to the freezing and boiling points, meaning that
even the specific heat of water is not equal to one at certain temperatures.

SI solves this problem by simply ditching the idea of the specific heat of water being one
and measuring all energy, including heat, in joules. So the specific heat of water (assuming a
kilogram of water) is 4185.5 J; that is, 4185.5 joules raises one kilogram of water through one
degree Celsius. Kilograms, degrees, joules; the relationship between these units is opaque
to the casual user. On the other hand, the old system of using calories to make the specific
heat of water equal to one isn’t transparently related to the system of energy. Thus, the
worst of both worlds is encompassed without ever tripping over the best.

We can do better than this, combining the notion of the specific heat of water being
equal to one while still using the same units for heat as we do for energy. We can do this by
determining what the specific heat of water is and defining our temperature unit based on
that, leaving our energy system as it is.

Raising 1 Maz of water from freezing to boiling requires 6E7;7 biquaWerg at a pressure of
2E Prem (one TGM standard atmosphere, the Atmoz). Converted into decimal, this means
1003.6 biquaWergs to raise 1 Maz of water through 100.054 degrees (kelvin). This means
that 1 biquaWerg raises 1 Maz of water by almost 0.1 kelvin on average, thus avoiding the
irregularity of the present systems. Since the specific heat of a substance varies with its
actual temperature, we have a small range of possible values to use as our base point; if
we set 1 biquaWerg as raising 1 Maz by 0.1 K, we can then calculate that 1 Werg raises 1
Maz of water through 0;001249 K, and make that our unit of temperature. This is a basic
consequence of TGM’s insistence on maintaining a 1 : 1 correspondence of basic units to one
another.

Calg (Cg) = 0;0012497249 K = 0;0021E05914◦F

(“Calg” is from “calorific grade.”) More simply, we can equate the units in biquaCalgs and
decikelvins; biquaCalgs, or even triquaCalgs, are probably the units that would be most
frequently actually used:
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biquaCalg (2Cg) = 0.1 K = 0.18◦F

Note that this is not basing the TGM unit of temperature on one-tenth (1
X
) of a kelvin. The

TGM unit of temperature, the Calg, is equal to the increase in temperature of one Maz of
water when one Werg of energy is applied to it, and has nothing to do with kelvins. The
0.1 K equivalency is to make it easy to convert from kelvins to Calgs and vice-versa; the
equivalency is well within the range of the actual specific heat of water between freezing and
boiling, so no liberties are taken with the data.

This equivalency does, in fact, make conversion from Celsius and kelvin scales very easy:
simply multiply the Celsius or kelvin temperature by ten and dozenize. Remember, of
course, that the zero point will vary; a Celsius temperature will zero at the freezing point
of water, while a kelvin temperature will zero at absolute zero, that temperature so low
that even molecular motion stops. Normally Calgs should be likewise counted from absolute
zero (which is 16E7;6 biquaCalgs below the freezing point of water), but there is nothing to
prevent the Calg from being counted from some other zero point, so long as that zero point
is recalled.

We are accustomed to neat ranges between water freezing and boiling in our current
Celsius and Fahrenheit systems; however, these ranges are not particularly useful for any
kind of precision work. For example, in the Fahrenheit system water freezes at 28◦ and boils
at 158◦, a range which is actually more useful than is generally supposed. The difference is
130, or d/180, which is a highly divisible number, and not coincidentally also the number of
degrees in a half-circle. It gives even divisors much more frequently than the poorly chosen
84 (d/100) degrees of the Celsius scale. In that scale, of course, water freezes at 0◦ and boils
at 84◦. However useful these scales may be in the kitchen, though, they aren’t particularly
helpful anywhere else. The freezing and boiling points of water vary greatly with different
conditions, particularly pressure; the range is great enough that the generalization allowed
isn’t always useful.

Still, for popular use, there is no harm in ensuring that the numbers we use to record day-
to-day outdoor temperatures and things of that nature are reasonably sized. Because we’ve
selected the size of the Calg rationally, though, as equal to the increase in temperature of one
Maz of water when one Werg of energy is applied to it, we cannot arbitrarily say that water
freezes at 0 and boils at 100, as the inventor of the current Celsius system did. However,
it is still convenient to count the freezing point of water as zero; because we equated 0.1◦K
with one biquaCalg, this means we can simply take the temperature in the Celsius scale,
multiply it by X, and dozenize it to get the temperature in biquaCalgs, with the freezing
point of water as the zero point. For convenience’s sake, we can call these decigrees.

Another idea, which yields some more conveniently-sized temperatures for day-to-day
uses, is the tregree, which is one dozen times the decigree; that is, the tregree is a triquaCalg
zeroed at the freezing point of water, while the decigree is a biquaCalg zeroed at that same
point. Convert centigrade to tregrees by multiplying by 0.83 instead of by X.

Some frequently used, relatively standard temperatures are listed in Table 11 on page
33. Calling the first of these systems “decigrees” helps us remember that, though these are
indeed biquaCalgs, their zero point is the freezing point of water, not absolute zero. Calling
the second “tregrees” reminds us that we are dealing with triquaCalgs, not biquaCalgs; and
also that the zero point is the freezing point of water, not absolute zero.
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Figure 3: Thermometry: left, comparisons between Celsius, Fahrenheit, and Tregrees; right, com-
parisons between quadquaCalgs, kilorankines, and kilokelvins.
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Decimal Dozenal
Standard d/◦F d/◦C d◦ t◦

Freezing Point 32 0 0 0
Room temp. 68.72 20.4 150 15;0
Blood temp. 98.42 36.9 269 26;9
Boiling Point 212 100 6E4 6E;4
B.P. at 2E Pm 212.09 100.05 6E4;6 6E;46
◦C and ◦F equipoint -40 -40 -294 -29;4
Absolute Zero -459.67 -273.15 -16E7;6 -16E;76

Table 11: Some frequently used temperatures in degrees, decigrees, and tregrees.

Converting decigrees to biquaCalgs is as easy as converting Celsius to kelvin: simply add
the number of heat units between absolute zero and the freezing point of water. In Celsius-
kelvin, this number is 273.15; in decigrees-biquaCalgs, it is 16E7;6. To convert tregrees,
simply moved the uncial point one to the left; that is, add 16E;76 instead.

Decigrees are abbreviated d◦; tregrees are abbreviated t◦.

6.3 Latent Heat

Latent heat is the extra heat which is added to a substance which does not actually raise the
temperature of that substance, but instead melts or vaporizes it. For example, when boiling
a pan of water, we can only raise that water’s temperature to the boiling point; beyond that,
we can continue adding heat all we want, but the water will not get warmer. Instead, it
will start to vaporize; namely, turn to steam (which can get hotter, but that’s a different
question). If we turn the heat down, we can keep the water at a very high temperature
without it vaporizing; we call this “simmering.” Or we can turn the heat up and make it
boil more, which will turn it into steam more quickly. The extra heat that we have to add
to water which is already at its hottest temperature (the boiling point) in order to make it
vaporize (turn to steam) is called its latent heat.

Every substance has a different latent heat of vaporization, but that of the most common
substance, water, is commonly used as a benchmark. In TGM, the latent heat of water is
measured in Wergs per Maz. Boiling point, of course, varies with pressure, so we typically
measure latent heat at the standard atmospheric pressure; in TGM, one Atmoz, or 2E Prem.

Latent heat of vaporization of water at 2E Pm = 3;162314 5Wg/Mz

Notably, this is roughly five times the amount of heat required to bring the water from
freezing to boiling; in other words, this is not a negligible quantity.

Similarly, at the lower end of the heat spectrum there is a corresponding latent heat of
fusion; that is, the amount of heat to change a frozen substance into a liquid. Every sustance
has this; but once again, that of water is usually taken as a convenient starting point.

Latent heat of fusion of water at 2E Pm = 5;6690 4Wg/Mz
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One should note that this number will be substantially the same regardless of the atmospheric
pressure; or, in other words, it takes a great change of pressure to make a significant change
in the latent heat of fusion.

6.4 Power

Power is the rate at which work is performed; in TGM terms, it is the number of Wergs done
every Tim. In the metric system, this unit is called the watt (W); in traditional systems, the
unit is called ergs per second, horsepower, or foot-pounds per minute, as well as a number
of other, more creative units (including Btu/hr and similar constructions). In TGM, there
is the Pov:

Pov (Pv) = 2EE;XX08 J/s (W) = 0;6E4X hp

The SI conversion factor to watts will be observed to be extremely close to 300; as such,
this allows for some very close correspondences to watts in the TGM system. For example,
one 2Pv (one biciaPov) is less than one thousandth below precisely three watts, so saying
1 2Pv = 3 W is accurate enough for almost all practical purposes.

One will also note that the Pov is only a little above a half a horsepower, allowing some
easy conversions between TGM and the traditional systems, as well.

Power also has to be applied over a given area; this measure is called power density, or
more precisely surface power density or specific power. This is measured in SI in watts per
square meter; it is measured in TGM in Penz, or Povs per Surf.

Penz (Pz) = Pv/Sf = 2X38;0E60 W/m2

Note that this is just under 5 kW/m2.

Examples

1. A mass of 8 Maz (4 cwt, 148 kg) is raised by rope and pulley to a height of 40 Gf (40
ft, 13 m) above the ground. If the other end of the rope is attached to some load,
(a) How much work can be done by its descent to ground level?

TGM
Force = mass × acceleration (gravity)
Earth’s gravity = 1 G; mass = 8 Mz

Force = 8 Mg
Potential energy = 8 Mg × 40 Gf = 280 Wg

SI (all numbers in decimal)
Force = mass × acceleration (gravity)

Force = 200 kg × 9.8 m/s2

Force = 1960 N Potential Energy = 1960 N × 15 m = 29400 J
Traditional (all numbers in decimal)

Force = mass × acceleration
Force = 4 cwt × 112 lbs

Force = 448 lbf
Potential Energy = 448 × 48 ft = 21504 ft-lbs
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(b) How much potential energy would the same mass have at the same height above
the surface of the moon? (Luna’s gravitation: 0;2 G.)
0;2 G is 1

6 , so simply take the final answers in the last question and divide by six:
TGM SI Traditional
280 / 6 29400 / 6 21504 / 6
54 Wg 4900 J 3584 ft-lb

2. A car “weighs” 30 Maz (16 cwt, 6E4 kg) and is travelling at 8 Vlos (26 mi/hr, 40
km/hr). What is its kinetic energy? (E = mv2)

TGM

30Mz× (8Vl)2 = 30× 54 = 1400Wg

SI

6E4kg × 40km/hr = 6E4× 11; 37m/s2 = 6E4× 128; X8 = 86448; E2J

Traditional

Mass = weight/gravity

16cwt× 94lb/28; 24ft/s2 = 52; 72lbf

52; 72lbf × 26mi/hr2 = 52; 72× 38ft/s2 = 52; 72× 1154 = 2E099ft− lb

This example shows the immense simplication of setting G = 1 and 1 hr = 10000 Tm.
3. A drum of oil weighing X Maz (5 cwt; 18X kg) is lifted 6 Gf (6 ft, 2 m) in 16 Tm (3

sec). What was the power required to lift it?
TGM

Force X Mz × 1 G X Mg
Energy X Mg × 6 Gf 50 Wg
Power 50 Wg / 16 Tm 3;4 Pov

SI
Force 18X kg × 9;97 m/s2 1502 N
Energy 1502 N × 2 m 2X04 J
Power 2X04 J / 3 s E41;4 watts

Traditional
Force 5 cwt × 94 lbs × 1 g 3X8 lbf
Energy 3X8 lbf × 6 ft 1E40 lb-ft
Power 1E40 lb-ft / 3 s 794 lb-ft/s

4. An electric motor has a power rating of 7 Pov (3 kW). How much work can it do in
(a) 1 unciaHour (X min.);

TGM SI
7 Pv × 1 3Tm 7 3Wg 3 kW × 420 s 1060 kJ
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(b) X hours?
TGM SI

7 Pv × X
4Tm 5X 4Wg 3 kW × X hr 26 kWh

26 kWh × 2100 s/h 90 MJ
Finding the answer in the traditional system is left as an exercise for the reader.

5. A 1 unquaPov (5 kW) immersion heater is in a water cistern 1;6 Gf × 3 Gf (0;49 m ×
1 m). The thermostat is set to cut out at 360 decigrees (42◦C), and the temperature
of the water is before the heater is switched on is 130 d◦ (16◦C). How long before the
termostat cuts out? (π is 3;18.)

TGM
Vol. 3 × 3;18 × 0;92 5;37 Vm
So mass of water: 5;37 Mz
Temp. Rise 360 - 130 230 2Cg
Heat Req. 5;37 × 230 EE0;9 2Wg
Time EE909 Wg / 10 Pv EE09 Tm

SI
Vol. 1 × 3;18 × 0;242

X5;72 L
So mass of water: X5;72 kg
Temp. Rise 42◦ - 16◦ 28◦C
Heat Req. X5;72 × 28◦C × 2512 (spec. heat) 14;X0 MJ
Time 14;X0 MJ / 5 kW 1E48 s

Exercises

1. A fork-lift truck lifts a box of goods weighing 16 Mag from a height of X Gf up to 16
Gf.
(a) How much energy has it spent on doing this?
(b) What potential energy (from ground level) has the box of goods at that height?
(c) If it then falls, at which velocity does it hit the ground? (Tip: acceleration is at

1 G from zero to final, so the average velocity is equal to half the final velocity.)
(d) What is its kinetic energy on hitting the ground? (E = mv2/2.)
(e) Assuming it is unbroken (!) and it takes a force of 8 Mag to push it aside, how

much energy is spent in moving it 20 Gf?
(f) Where has this energy gone?
(g) Do the whole problem again in metric using: d/450 kg, 2.5 to 3.25 meters, g = 9.8

m/s2, side push 2 kN × 8 m.
2. A container was closed up at normal atmospheric pressure when the temperature was

130 decigrees (d/18◦C). The building in which it was stored caught fire during which its
temperature ran to 1300 d◦ (d/216◦C). Assuming it remained intact and sealed, what
was the internal pressure
(a) in atmospheres, and
(b) in Prem (N/m2),
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at that temperature? (Formula: P2 = P1 × T2/T1. Absolute temperatures must be
used.) Work to three significant figures.

Chapter 7: Angles, Rotation, Radiation, and Perspective
Fundamental Realities: Pi and the Radian

Although many of our common units contain an element of the dozenal system
in spite of centuries of decimal and metric interference, some have little dozenal
element, and some lack even a decimal one. The most commonly encountered of

these are minutes and seconds of time, with their units of sixty; similar, however, are minutes
and seconds of angle. Sixty is a multiple of both ten and the dozen; therefore, minutes and
seconds cause an equal amount of trouble in both dozenal and decimal.

This system must, therefore, be corrected. First we will address TGM’s contribution to
angular measurement, then proceed to rotation and radiation, and finally to perspective.

7.1 Angles

First things first: it is expedient to eliminate the messy system based on the d/360◦ in a
circle. While this figure does provide many factors, and in fact combines the best features
of both ten and twelve (since it is a multiple of both), it neither fits into a coherent dozenal
system of units nor do its advantages override this problem. There are too many degrees,
which are too small; we are frequently forced to deal with over one hundred degrees at a
time, even when utilizing negative numbers to avoid numbers greater than one hundred and
eighty. Furthermore, there is a better system already commonly used: that of the radian.

Most people know about the number pi, written π in mathematical notation. In math-
ematical terms, π is the ratio between the diameter of a circle and its circumference; that
is, it’s the result of dividing the circumference of a circle by its diameter. It is an irrational
number, which means that it repeats to infinity; it is furthermore a non-repeating irrational
number, because it has no discernible pattern. In decimal, of course, π is well-known as
3.141592, and so on as long as one cares to go. In dozenal, π is equal to 3;184809493E, and
again so on as long as one cares to go.

π is, obviously, an inconvenient number, and no one particularly likes dealing with it.
However, it is a natural number and is unavoidable when dealing with natural systems;
furthermore, it is a cornerstone of geometry and engineering, without which we could do
very little mathematically.

π also gives us the radian, which is a useful measure for angles handier than the cumber-
some degree. Since π is the ratio of the diameter of a circle to its circumference, we know
that a circle of a given radius (which is equal to half its diameter) rolls through a certain
constant distance every time it travels its radius; that is to say, a circle one Grafut in radius
rolls through a certain portion of its circumference for every Grafut it travels. That portion
of its circumference we call the radian, and the angle beginning at the center of the circle
and extending outward to cover that portion of its circumference is an angle of one radian.
This is a natural 1 : 1 ratio, and exists whether the radius is measured in Grafuts, feet,
meters, or anything else.
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Degree to unciaPi Correspondences
0V1 0V2 0V3 0V4 0V5 0V6 0V7 0V8 0V9 0V

X 0V
E 1V0

15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

Table 12: Degree to unciaPi correspondences.

When the circle has traveled over the whole of its circumference, it has traveled 2π
Grafuts, and therefore turned through 2π radians; when it has turned through half of its
circumference, it has traveled π Grafuts and therefore turned through π radians. This means
that an angle representing a whole circle, conventionally represented by d/360◦, can instead
be represented as 2π radians; a half-circle, normally represented by d/180◦, can instead by
represented as π radians; and so on. Typically these angles are easily recognized as radians
by the presence of π as a term, and consequently the word “radians” is often omitted when
speaking about them. It is an admirable system well-based in the nature of the circle.

But TGM has benefits to offer here, as well. While in decimal angles like one-third of a
circle (d/120◦) require strange locutions such as 2π/3, TGM is able to leverage the power of
the dozenal system to make these portions of the circle easier to deal with. Refer back for
a moment to the chapter on time10; what is the clock but a dozenal division of the circle?
This provides a very easy and powerful way to deal with radians that the decimal system
simply cannot match.

The clock, of course, divides only half of the day into twelves; so let us imagine the whole
day charted on a single large circle, with two dozenal divisions (that is, 20 [twenty-four
in decimal parlance] parts). The top half of the circle is 0;0–1;0, the bottom half 1;0–2;0.
Remember that half of a circle in radians is π, and a full circle is 2π. Let us, then, say
that the 1;0 on the circle is in fact 1;0π, and the 2;0 is 2;0π. A quarter of a circle (d/90◦) is
then simply 0;6π rather than π/2; a third of a circle is 0;8π rather than 2π/3. The angle, in
fact, is simply equal to its dozenal division of the semicircle multiplied by π, making angular
calculations much simpler.

Indeed, this is so simple and powerful that TGM applies a new name to such angles;
namely, unciaPis. This is simply a new unit, the Pi, which is equal to π radians, divided by
twelve and labeled with uncia in the normal, regular way. The TGM protractor, then, is a
marvel of regularity and ease, particularly when compared to the old one. It is pictured in
Figure 4 on page 39.

Looking at the protractor, remember that each of the numbers on the outer rim is in
fact simply the number of unciaPis. Using the simple “V” symbol, nothing more than a
superscripted lowercase “v,” to replace the normal uncial point, we have a convenient nota-
tion for a powerful concept. So, for example, d/120◦ is equal to 0V8; the “Pis” is understood
because of the angle symbol replacing the uncial point. “0V8” can also be read “8 unciaPis,”
or simply “0;8 Pis.” The superscripted “v” indicates an angle measured in Pis.

This system has been applied to the most common angles for practical work in Table 12
on page 38; the superior simplicity of the system stands out immediately.

10See supra, Chapter 3, at 14.
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Figure 4: The TGM Protractor, labelled in unciaPis.

UnciaPis can, of course, be further divided like any other TGM unit. 0V04 (four biciaPis,
or 0;4 unciaPis, or 0;04 Pis) is equal to 5◦, for example, and 0V08 is therefore equal to
d/10◦. The TGM protractor, therefore, provides for all the major divisions of a traditional
protractor precisely and accurately, in addition to providing a more convenient and powerful
notation.

A few examples demonstrating the power of this notation should not be unwelcome.
1. Opposite angles measured in unciaPis differ simply by 1;0. So, for example, the angle

opposite 0V3 is 1V3; the angle opposite 1V8 is 0V8. There is no need for cumbersome
calculations of adding or subtracting d/180◦.

2. The sum of any triangle’s angles will no longer be the strange d/180◦, but instead a
simple 1V0; that is, a single Pi.

3. The supplementary angle (that is, the angle which, added to the angle in question, will
equal a full semicircle, or d/180◦) is simply the angle in question subtracted from 1V0.
So, for example, the supplementary angle of 0V4 is equal to 1V0 − 0V4, or 0V8.
As such, dozenal complements are simply fractions which, when summed, equal 1V0.
Trigonometry thereby becomes much simpler. Trigonometric functions of supplemen-
tary angles are equal; so 0V1 and 0V

E (and, for that matter, 1V1 and 1V
E) will have the

same numerical value for their trigonometric functions (such as sine and cosine).
4. The system combines the best features of degrees (no need to be tossing around factors

of π all the time) and radians (no need to deal with the cumbersome degree measure-
ments like 90◦ and 180◦). So while the mathematician is still dealing with normal
numbers, such as 0V4, he is also dealing with 4 unciaradians. Put another way, the
number of Pis multiplied by π is equal to the number of radians.
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The simplest example of this is the angle of the semicircle; that is, d/180◦. This is 1
Pi, or 10 unciaPis. As such, we are dealing with π radians. The full circle, of course,
is 2 Pis, or 20 unciaPis, and is equal to 2π radians. The quarter circle is 0;6 Pis,
or 6 unciaPis, and is equal to 0;6π radians, or 6 unciaRadians. It’s that simple; the
easy-to-use degree measurements are equal to the radian measurements without the
factor of π.

5. The unciaPis of longitude match up with the hours of the solar day, and so with
the basic Standard Time zones around the world. In astronomy, the unciaPis match
up with sidereal hours of right ascension (something astronomers will understand and
find extremely useful). In traditional units, by contrast, one hour, one minute, and one
second of right ascension equals d/15 degrees, d/15 minutes, and d/15 seconds of angle.

TGM totally eliminates the necessity of adding, subtracting, multiplying, and dividing
by cumbersome numbers like d/180 and d/360, and even avoids the necessity of using π all
the time, while still maintaining easy compatibility with the radian system. It is the best of
both worlds.

Exercises

1. Write the following angles in Pi notation; e.g., 15◦ = V1, 5◦ = V04, 240◦ = 1V4:
45◦, 15◦, 10◦, 5◦, 20◦, 25◦, 65◦, 75◦, 80◦, 22.5◦, 2.50◦, 7◦30’, 1◦15’, 120◦, 190◦, 270◦,
300◦, 325◦

2. Write down the complements, supplements, opposites, and negatives of:
(a) V3
(b) V5
(c) V4
(d) V16
(e) V04
(f) V18
(g) V6
(h) V8
(i) 1V4

Note that two angles are complementary if their sum is a right angle (that is, a multiple
of 6; e.g., V2 + V4 = V6. Two angles are supplementary if their sum is equal to a
semicircle; e.g., V2 + V

X = 1V0. Two angles are opposite if their difference is equal to
a semicircle; e.g., 1V2 − V

X = 1V0. Two angles are negatives if their sum is equal to a
full circle; e.g., 1V

X = −V2.
3. Find the third angle in the following triangles:

(a) V3, V3
(b) V5, V4
(c) V4, V4
(d) V1, V7
(e) V16, V24
(f) V8, V24

4. The sum of the angles of any polygon is always (n − 2)π, 1V0 for triangles, 2V0 for
quadrangles, 3V0 for pentagons, 4V0 for hexagons, and so on. What is the sum for:
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Rotational and Radiational Unit Prefixes
Radius Radius2 Radius3

Multiplied by Rada Quara Cubra
Divided by Radi Quari Cubri

Table 13: Rotational and Radiational Unit Prefixes

(a) An octagon;
(b) A heptagon;
(c) A rectangle;
(d) A parallelogram;
(e) A gable end wall?
What is the angle of a regular:
(a) Octagon;
(b) Hexagon;
(c) Heptagon;
(d) Nonagon?
(e) Do these again in decimal, giving answers in degrees, minutes, and seconds.

7.2 Rotation and Radiation

Units concerned with rotation and radiation often involves multiplying or dividing by the
radius, and sometimes also by the square or cube of the radius. TGM therefore offers some
easy ways to referring to such multiples or quotients in the form of prefixes, which can be
seen displayed in Table 13 on page 3E.

In abbreviations simply use the initial letters; these prefixes can be further abbreviated in
the same way as the numerical prefixes, by superscripting the multiples and subscripting the
quotients, or alternately by capitalizing multiples and lowercasing quotients. Pendlebury
frequently called this putting them “upstairs/downstairs,” a particularly apt comparison.
For example, to refer to a quaraMaz, write either qMz or QMz; for a quariSurf, write qSf
or qSf.

These prefixes can also be added, subtracted, or cancelled out in the normal way, as well.
For example, any one divided by itself cancels out to simply 1; so qMz divided by qMz is
simply 1 Maz. R×R and R/r = Q, while r×r or r/R = q, and q/R = c, and so on.

This also gives some very convenient abbreviations for different concepts. For example,
moment of intertia, which in SI measurements requires the cumbersome kg·m2, is simply
QMz, and angular acceleration, in SI rad/s2, is simply rG. To find torque, the product
of moment of inertia and angular acceleration, simply find the product of Q×r (R) and
the product of Maz×Gee (Mag), making RMg. The radaMag, therefore, is the TGM unit
of torque, or angular force. In the traditional systems this is measured in “pound-feet”
or “newton-meters” to distinguish it from energy, measured in “foot-pounds” or “meter-
newtons” (the latter of which, of course, is simply joules). The advantage of the radaMag
over this cumbersome system should be evident.
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rVl

rGf
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QMz

Figure 5: A graphical demonstration of some radial and rotational units.

Figure 5 on page 40 demonstrates a few of these concepts. Depicted is the standard
situation of a ball tied to a rope being swung around a central point. The rope is the solid
line connecting the rim of the circular path to the center and the ball is the black disc. The
rope is, as depicted, one Grafut long; this is not necessary, but it makes the demonstration
simpler. The mass of the ball is one Maz (a large, or at least massive, ball); this mass gives
it a moment of inertia of one Maz multiplied by the square of the radius, or one quaraMaz
(QMz). Its displacement, or change of position, is along the rim of the circle; its displacement
is therefore one Grafut along the edge of a circle with a radius of one Grafut; that’s a Grafut
divided by the radius, or radiGrafut (rGf). Its velocity is constantly changing direction,
of course; right now it is at the top of the circle, so its velocity is directly to the right.
Since its velocity is angular, rather than a straight line, it is equal to one Grafut along the
circumference per Tim, or one Grafut per Tim divided by the radius, giving us radiVlos
(rVl). The force which gives it this velocity is angular force, or torque; this is the force
multiplied by the radius, or the radaMag (RMg).

Of course, there are many other possible units given rise to by these prefixes; but this
should suffice for graphical demonstration.

Using these prefixes, we find some interesting correspondences. The radiGrafut, or radifut
(rGf), turns out to be another name for the radian, since it means literally one Grafut along
the circumference of a circle divided by the one Grafut of the radius. It’s easier to use the
symbol “rGf” than the traditional “Rn” or “rad” for radians because the prefix for “radi”
makes for easy multiplying and dividing.

Solid angle, essentially a three-dimensional angle such as a pyramid or cone shape, or an
angle extending from the center of a sphere, is traditionally measured in steradians (Sr). In
TGM, this is simply the quariSurf (qSf).

Angular velocity is measured in radiVlos; because the radiGrafut is a radian, the radiVlos
comes to one radian per Tim.
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We have already seen the units for moment of inertia, the inertia which tends to preserve
rotational energy, which is proportional to the square of the distance from the center of the
rotation. This is the quaraMaz (QMz), the mass of the object multiplied by the square of
the radius (that is, the square of the distance to the center of rotation).

The quaraPov (QPv) is the unit of radiant power; that is, power eminating uniformly
outward in all directions. Light from a burning bulb is the most common example, but it
is also relevant to stars and other radiant energy sources. This type of energy decreases in
proportion to the square of the distance from its source; that is, to the square of the radius
of the sphere. The square of the radius is the quara.

The quaraPenz (QPz) is the unit of radiant power density or radiant intensity. It relates
to power density the same way that the quaraPov relates to the Pov.

Exercises

5. The radius of a lorry’s roadwheels is 2 Gf (2 feet).
(a) Through what angle (in radians) do the wheels turn for every 10 Gf (twelve feet)

that the lorry travels?
(b) If it is going at 7;X Vlos (d/30 mi/hr), what is the angular velocity of the wheels

in radiVlos (radians per second)?
(c) Since 2π equals 6;35 (6.28), what is it in revolutions per Tim (per second)?
(d) How many revolutions per biciaHour (minute)?

6. A torque of 7 radaMag ( d/400 lb-ft) is applied to a flywheel having a moment of inertia
of 6 quaraMaz (d/340/32.2lb-ft2).
(a) What will be the angular acceleration in radiGee (radians per second per second)?
(b) How much work will have been done by the end of the second revolution? (Angular

acceleration is equal to torque divided by moment of inertia; work is equal to
torque times radians.)

7. The earth is 8;2 decquaGrafuts (1.5×1011 meters) from the Sun.
(a) What is the square of this distance? (Square the number, double the prefix.)
(b) The intensity of the Sun’s radiation: 16;XX 18QPz (unoctquaquaraPenz) (3.13×1025

W/Sr). What is the power density in Penz (watts/m2) at the Earth’s orbit?

7.3 Reciprocal Units

Frequencies are usually expressed against time, as so many per Tim (or per second, minute,
hour, and so on). Sometimes, however, when speaking about light and other electromagnetic
radiation, it is measured in inverse wavelengths, as so many per meter. This is the measure-
ment used for lenses. The convergence, or strength, of a lens is measured in dioptres; two
dioptres means a focal length of half a meter, while three means of a third of a meter, and
so on.

Other measurements are also expressed inversely in this way. So, for example, the fineness
of a grating depends on how many perforations are present per unit of area; in TGM terms,
how many per Surf. The compactness of a solid is measured in how many molecules are
present per Volm. In TGM, the prefix “Per” expresses this inverse relationship when attached
to a unit. The TGM equivalent to dioptres, for example, is the PerGrafut or Perfut, which
is equivalent to 1/Gf.
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Perfut (PGf) = 1/Gf = 3.382 dioptres, or per meter

Another example is Rydberg’s constant (mathematically depicted as R∞), a number com-
monly employed in spectroscopy, equal to 1;1058E4XE hexquaPerfut (6PGf).

This prefix should not be abused; it is not used for simply replacing the division marker
(“/”). Rather, its use should be limited to a plain integer numerator, most typically simply
1, to preserve its meaning as marking an inverse unit.

7.4 Perspective and Angular Size

Perspective should be familiar to any artist, but science demands that it not only be familiar,
but also measured with the same precision as any other physical phenomenon. Perspective
measures the differences in appearances which occur based on changes in position. So, for
example, when we see an object retreating from us or coming towards us, the object appears
to shrink or to grow, although in reality it remains the same size. When it is twice as far
away as originally, it looks half as big; when it is half as far away, it looks twice as big. The
area, however, appears only a quarter as large when the object is twice as far away, because
both the height and width of the object has reduced by half.

Simply put, lengths vary in proportion with distance; area varies in proportion with the
square of the distance. TGM handles this elegantly, as well.

One Grafut viewed at a distance of one biquaGrafut spans an angle of one biciaRadian; at
one triquaGrafut it spans an angle of one triciaRadian; at one quadquaGrafut, one quadcia-
Radian; and so on. This has immediate and easy practical applications. For example, Earth’s
moon, Luna, is four hexquaGrafut (4 6Gf) wide and three octquaGrafut (3 8Gf) distant, so
it spans one and a third biciaradiGrafut (1;4 2rGf) (that is, it has an angular diameter of
that number) when looking at it from the surface of the earth. This is easily calculated by
dividing the numbers (4/3 = 1; 4) and then subtracting the prefixes (6− 8 = −2).

In comparison, the same calculation in one of our old systems of measure, SI metric,
involves d/3500 kilometers wide, 380,000 kilometers distant, and 31′40′′ angular diameter.

As another example, the sun appears to have the same diameter as Luna when viewed
from Earth; that is, its angular diameter is 1;4 biciaRadian. However, this is because it is
much more distant and much bigger. Its actual diameter is about X;E 8Gf; we can calculate
its distance from Earth by utilizing this simple TGM correspondence:

8
X; E/21; 4 = 8; 2 XGf (decquaGrafut)11

We’re using simplified figures here—we cannot expect nature to provide all its measure-
ments in integer units—but this does yield the approximate distance of Earth to the Sun,
and it’s been found convenient to use this as a unit for interplanetary distances. Astronomers
call it an “astronomical unit,” abbreviated “au,” and it’s a long, unique number in all its
precise glory. In TGM it is called the Astru:

Astru (Au) = ≈ 8;2 XGf = 820 7X42 1224;2E47 Gf

The International Astronomical Union defines the astronomical unit in terms of meters, of
course; specifically, that it is equal to exactly d/149,597,870,700 meters. This figure and the

11Read: “Octua ten dit elv divided by bicia one dit four equals eight dit two decquaGrafut.”
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Perspective Object

Parallax Object

Figure 6: Parallax and perspective compared and contrasted

Grafut figure given above for the Astru are exact, or very nearly so; but at these ranges, any
inaccuracy is so small that it’s equally safe to consider it as equal that figure. With such
huge numbers the difference is hardly worth considering.

7.5 Parallax

Parallax is the same as perspective, but considered from the opposite direction. That is,
while with perspective we’re dealing with the different apparent sizes of distant objects, with
parallax we’re dealing with the same object looked at from disparate positions close by. It’s
chiefly useful for determining extremely long distances, distances that makes the Astru look
like a trip next door; that is, interstellar and intergalactic distances. Indeed, it was parallax
which first demonstrated how far away the stars really are.

The bottom line with parallax is that we look at a distant object and note its position; we
then look at it from another position relatively close by; we then note the apparent difference
in position from these two different vantage points and use that to calculate the distance.
Because parallax is measured along what we call the “celestial sphere”—that is, along the
giant imaginary circle that surrounds our planet—we measure parallax in angles; so in TGM,
we measure it in Pi and the radian.

It sounds complicated, but we do it literally every waking moment without even thinking
about it. Our eyes are in two different places, and we only gain depth perception by mentally
gauging the distance of objects based on their different apparent position in each eye. It
speaks well for the power of our brains that we do this and put together a single picture
from two (one from each eye) without ever even realizing it.

Interstellar distances are so vast that they require a pretty significant distance between
vantage points to measure any parallax at all. So we acquire the greatest difference we
can: the different positions of the earth on either side of the sun, six months apart. These
positions are, of course, two Astru apart, as well; this means that the difference of angular
position divided by two is the parallax relative to one Astru.

This principle gives us some useful information; e.g., a parallax of one hexciaRadian
means a distance of one hexquaAstru; and a parallax of one septciaRadian means a parallax
of one septquaAstru. In other words, there are three simple steps to determining distance
in Astru from parallax:

1. Take the parallax in radians and divide by two; for example, 14 6Radian divided by
two equals 8 6Radian.
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2. Take the reciprocal of the resulting number; that is, divide it from one. For example,
1/8 = 0; 16.

3. Make the exponential prefix positive rather than negative. So, after step 2, we had
60;16. Make it positive: 60;16. Moving our uncial point, we have 1;6 5Au.

Naturally, the smaller the parallax, the greater the distance to the object.
Currently, we measure parallax in seconds; that is, in d/ 1

120 of a degree. An object which
shows one second of parallax is said to be one parsec (parallax second) distant. A parsec is
about 6;9344 13Gf (untriquaGrafut), or 3.0856 × 1016 meters; that’s equal to about 9 E449
Astru. It is, naturally, an enormous distance.

But in TGM there is no need for seconds or parsecs; we simply divide by two; take the
reciprocal; and raise the prefix of the parallax from negative to positive, and we have the
distance in Astru.

Exercises

1. A car is 6 Gf wide and 5 Gf high (6 ft, 5 ft). When it is at a distance of 2 2Gf (93
yards), what is:
(a) its angular width and height in Pi (radians); and
(b) its angular area in qSf (steradians)?

2. The nearest star, Proxima Centauri, has a parallax of E;00 6Pi. What is its distance
in Astru?

Chapter 8: Electromagnetism
Fundamental Reality: Permeability of Free Space

Electricity and magnetism are often and easily misunderstood, so a little explana-
tion is probably in order before forging ahead. The word “electromagnetism” is often
used to describe these two phenomenon together, for while no one ever got burned

by magnetism, nor will magnetism all by itself run the computer this book is being prepared
on, the two are really just different aspects of the same thing.

8.1 A Brief Explanation of Electromagnetism

All matter, as we know, is made up of tiny particles called atoms. These atoms sometimes
join together to form molecules, but sometimes they remain by themselves and form what
we call elements, such as hydrogen, iron, and uranium. These atoms are themselves made
up of even tinier particles, which come in a variety of different sizes and types. The quantum
physicists have a huge variety of great arguments about these types, but at least three of
them are agreed upon by everybody, quantum physicist or not: protons, neutrons, and
electrons.

Atoms themselves are like tiny solar systems (many physicists would disagree, but it’s
still helpful to think of them that way), with a large mass in the center and lots of little
things spinning around it. The mass in the center is made up of protons, particles which
have a positive electrical charge, and (usually) neutrons, particles which have no electrical
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charge. This mass we call the nucleus. The “planets” which circle around the nucleus are
called electrons; they are considerably smaller than either protons or neutrons and they carry
a negative electrical charge. And this is where the wonder of electromagnetism is made.

The term “electrical charge” tends to conjure up images of static electricity bolts and
television hums, and these are, of course, examples of electromagnetism. However, all elec-
trical charge is, at its root, an attraction or repulsion between two types of thing. Positive
and negative charges attract one another; negative and negative, or positive and positive,
charges repel one another. Magnetism, similarly, is just an attraction and repulsion; north
and south poles attract, while north and north or south and south repel.

The source of electrical attraction are these protons and electrons. An atom has a certain
number of protons, different depending on its type, and this gives it a certain positive
electrical charge. It wants to have an equal number of electrons circling its nucleus in order
to have a neutral charge. This is desirable because it has just enough positive charge to
attract a number of electrons equal to its number of protons, but not enough to attract more
and too much to attract less.

However, all electrons are not created equal; that is, not all orbits around a nucleus are
created equal. Electrons orbit the nucleus in little shells, and each shell can only hold a
certain number of electrons. So when an atom has the correct number of electrons—that is,
that number is the same as its number of protons—it still isn’t necessarily stable. It’s only
really happy when it not only has the right number of electrons, but when those electrons
also completely fill its outer shell.

When an atom is not in this situation—which is most of the time—its outer-shell electrons
tend to go wandering to other nearby atoms, where they might fill up the outer shell. An
atom with more electrons than protons, due to this tendency, is called a negative ion; an
atom whose electrons have gone walkabout in this way is called a positive ion. They are
called this, naturally, because they have negative or positive charges.

Moreover, these moving electrons are called electricity; and that is what electricity is:
simply the movement of these tiny electrons from one place to another. Specifically, electrons
(and thus electricity) flow from areas of greater negative charge to areas of greater positive
charge. This sounds like a law of nature, but it’s really just another way of saying what we
discussed earlier: negative and positive attract one another. Negatively charged electrons
are attracted by positively-charged areas; they travel from places where there are more to
places where there are less electrons.

Certain atoms are more given to this sort of thing than others. Those who have just
an electron or two extra on their outer shell, and thus have a great tendency to lose those
electrons to other atoms, are called conductors. When they lose these extra electrons, they
become positive ions, and thus are great attractors for moving electrons. The best conductors
are the metals, things like iron, gold, and silver. The shininess that characterizes metals in
their pure forms is, in fact, a swarm of electrons; we call this metallic luster.

Elements which tend to attract the wandering electrons let loose from positive ions are
called insulators. These elements are typically only an electron or two short of having a
full outer shell, and thus easily grab an electron or two and become negative ions. Since
electrons, being negatively charged, are repelled by other negative charges, these insulators
resist the flow of electricity.

Elements with a half-full shell are called semi-conductors, and they tend to let their
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Figure 7: A simplified diagram of electromagnetism in a coiled wire; solid line is wire, dashed the
field lines of the magnetic field.

electrons go or grab onto new ones equally well. Elements like carbon, silicon, and germanium
are included in this group, and they are very important for applications like transistors.

Areas with a net positive charge are said to have positive potential; areas with a net
negative charge have a negative potential.

When electricity flows, it doesn’t just move electrons; it effects the space all around the
flow. In the same way that Luna can feel the gravity of Earth over such a vast distance of
empty space, the attractive or repulsive force of electricity is felt over empty space (though
not nearly so much of it). The force of electricity is carried along invisible lines, which we
call lines of electric flux. These lines also cause a twisting of space, giving rise to another
force which we call magnetism; and this force is called magnetic flux.

Magnetic flux often cancels itself out as it interferes with itself, and it is also often
extremely weak, such that it wouldn’t normally be noticed. However, if the electrical current
is sent in a spiral motion (say, by wrapping the wires that it’s flowing through into a coil),
the magnetic flux reinforces itself and creates an electromagnet. The magnetic forces in such
a case will typically be very evident, and the flux will organize itself into magnetic poles,
one north and one south. The more electricity and the more turns, the greater the flux. If
you send the electricity through the wire in the opposite direction, the magnetic poles will
reverse.

Just as some elements conduct electricity, some conduct magnetism, though fewer and
less dramatically. Strictly speaking, since electricity is flowing in every atom (meaning that
every atom has moving electrons), every atom is a tiny electromagnet. But normally the
current is spinning in different ways in different atoms, and is facing in different directions,
so this force is cancelled out. However, in these magnetic conductors, the atoms form
themselves such that they reinforce one another’s magnetic flux, and thus become large
magnets. (In most substances the matter will disorganize itself again after a time, losing
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this net magnetism.) For this reason, putting a magnetic conductor, such as iron, inside
an electromagnet greatly increases its magnetic flux; the magnetic conductance of the iron
reinforces the electromagnetism.

Just as electricity gives rise to magnetism, so magnetism gives rise to electricity; that is,
just as moving electrons cause magnetism, magnetism will cause electrons to move. When
magnetic flux (say, from magnetized iron) affects an electrical conductor (like copper), an
electrical flow is caused in the conductor. This is called induction.

Electromagnetism is like light; that is, it travels at the speed of light, and it travels great
distances. When it does this, it is called electromagnetic radiation. Such radiation gives
rise to “on the air” radio and television broadcasts, as well as radiant heat and many other
effects.

There is one more type of electron movement; this last is not really a type of electricity.
Sometimes electrons are not moving from one atom to another; sometimes they break com-
pletely free of atoms and go flying off on their own. This is typically the result of radioactive
decay, and is called beta radiation. Such electrons are still negatively charged, and they are
still effected by flux lines; CRTs make their pictures using such free electrons.

8.2 Electromagnetic Measurement

Having described the basic theory of electromagnetism, we can now move on to what parts
of it we measure and how we measure them.

To visualize what these units and measurements describe, it can be helpful to picture a
wire as a water pipe, and the electricity as the flow of water within it. A certain amount
of water flows through a pipe at a certain pressure; similarly, a certain current of electricity
flows through a wire at a certain potential. Because electricity is not water, we measure
potential as a potential difference; that is, the difference in electrical potential between two
different points.

The unit for current in the SI metric system is the ampere; however, it bears little
relationship to other SI metric units. For example, the force between two parallel conductors
(e.g., wires) placed one meter apart and carrying a current of one ampere is 2×10−7 newtons
per meter; needless to say, this is not a particularly helpful unit.

In TGM, the force for two wires carrying one ampere of current placed one Grafut apart
is 2×10−7 newtons per Grafut of length. That force is approximately 4;0X ennciaMag (9Mg).
To make that force equal to exactly one ennciaMag, the current must be 0.49572 amperes
(or “amps”), and this provides a convenient figure for our unit of current.

Kur (Kr) = 0.495722069 amp = TGM Unit of Current

This means that six hexciaKur (6Kr) is almost exactly equal to one microamp (0.9960979).
As we will recall from above,12 the TGM unit of power is the Pov, while the SI unit is

the watt. These units not only measure work over time, but also electrical work over time;
so dividing the unit of power over the current gives us our unit of electrical potential. In SI
metric, this is the volt; in TGM, it is the Pel (from “potential electric,” and from the Latin
pellere, to drive):

12See supra, Section 6.4, at 34.
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Pel (Pv/Kr) (Pl) = 871.260799 V = Unit of Electric Potential

This measurement means that one triciaPel (3Pl) is 0.5042 V, a little more than half a volt.
A twelve-volt car battery is only a little less than two biciaPel.

Just as clogs sometimes come into a water pipe, impeding the flow of water, so also resis-
tance in a circuit can impede the flow of electrons. This is called, unsurprisingly, resistance,
and it is measured in the amount of potential per unit of current. In SI metric, this is volts
per ampere, and it is called the “ohm” (symbol Ω); in TGM, it is Pel per Kur, and it is
called the Og.

Og (Pl/Kr) = 1757.559033 ohms (Ω) = Unit of Resistance

At first glance the Og seems enormous, and in comparison with the ohm it is; however, it is
a more practically-sized unit all the same. Units like kilohms and megaohms are common in
practice, because the ohm is really too small.

As water flows over time, it accumulates at the end; so also does electrical charge. With
water flow, we multiply the volume of water by the time it has been flowing; with electricity,
we multiply the rate of flow (the current, or Kur) by the time it has been flowing (in Tims).
So in SI metric, this is amperes times seconds, the coulomb (symbol “C”); in TGM, it is Kur
times Tim, the Quel (symbol “Ql”).

Quel (Ql) = 0.0860628591 C = Unit of Electrical Quantity

It’s worth noting that an unquaQuel is 1.0327543098 coulombs, very close to one. This is a
convenient equivalency for conversion purposes.

A Quel has a charge equal to about 2;XX45 unquadqua (1014) electrons; stated conversely,
an electron has a charge equal to about 4;1691 unpentciaQuel (15Ql). In particle physics and
some other disciplines, the charge of an electron is treated as a unit; this is typically called
the electron-volt (symbol “eV”), and is equal to 1.602176× 10−19 joules.13 In TGM, we have
the electron-Pel, equal to 4;1691 unpentciaWergs (15Wg).

The electron-volt and the electron-Pel are exactly equal in terms of their actual charge;
they are merely expressed in different units. The conversion factors between them are the
same as those between volts and Pels.

The “official” SI derived unit of electrical quantity may be the coulomb, but other units
have also been found to be useful. Battery capacity, for example, is typically measured in
“amp-hours,” or ampere-hours, rather than the coulomb’s ampere-seconds. By the usual, if
inconvenient, expedient of our current time-measuring system of multiplying by six tens, we
easily find that one amp-hour is equal to d/3600 amp-seconds, or coulombs. It’s easy enough
to approximate amp-hours to TGM units; since one ampere is about equal to two Kur, one
amp-hour is equal to about two KurHours, which (because an hour is a quadquaTim) can
also be expressed as two quadquaQuel (2 4Ql).

Capacitance is another aspect of electricity which we have not yet discussed. When one
takes two conductors, usually metallic plates, and places in between them an insulator, one

13It is really a unit of energy, and consequently is cited in joules (in SI metric) and Wergs (in TGM);
however, since it is linked to a single volt and a single Pel, converting it is a simple matter of multiplying by
one, and makes no difference in the figure.
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has a capacitor. One then attaches a current to the capacitor; the insulator refuses to permit
electrons to flow from one plate to the other, which results in a build-up of electrons on one
plate and a dearth of them on the other. The amount of electrical quantity necessary to
charge the capacitor to the potential of the current source is its capacity; the phenomenon
is called capacitance.

In SI metric, capacitance is measured in farads (symbol “F”), or coulombs per volt (C/V).
In TGM, it is measured in Quel per Pel, which is given its own unit name, the Kap:

Kap (Kp) = 98.77967559 µF = Unit of Capacitance

The Kap is most easily attached to the microfarad because the farad is an enormous unit. In
practice, we typically deal with microfarads or even picofarads; the Kap is a more reasonably
sized unit.

Of course, like most physical processes, charging a capacitor does not happen entirely at
the same rate. Rather, it starts off quite quickly, then slows as one approaches the limits
of the capacitor. Also, no matter how good a conductor a substance is, it will have some
resistance, and this will also effect the rate of charge. Thus, we speak of the time factor of
the capacitor circuit; this is the theoretical time to charge the capacitor if charging continued
at its initial rate. It is determined by multiplying the resistance by the capacitance. In SI
metric, multiplying ohms by farads will give seconds; in TGM:

Og · Kap = Tim
In reality, of course, this isn’t the time to full charge, but the time to 77;03% (perbiqua) of
the full charge. That number is simply 0;7703 multiplied by one biqua to yield the perbiqua;
it is produced by the equation:

1− e−1

The “e” is the Euler number, the base of the natural logarithm, and it crops up in situations
as diverse as capacitance and population growth. It’s a repeating fraction that can’t be
exactly expressed in any number base; in dozenal, it is 2;8752 3606, and so on; in decimal,
2.718 281 83, and so on.

Examples

1. A room is lit by four 18 biciaPov (d/60 watt) lamps, and heated by a 6;8 Pov (3 kilowatt)
heater. The mains supply is 340 triciaPel (d/240 volts). What is the current when:
(a) the four lights only are on;
(b) the heater only; and
(c) all on?
What is the resistence of:
(d) one lamp;
(e) the heater?

a. 4 × 0;18 / 0;340 Pv/Pl = 2 Kur 4 × d/60 / d/240 W/V = 1 amp
b. 6;8 / 0;340 Pv/Pl = 20 Kur d/3000 / d/240 W/V = 12.5 amp
c. 2 + 20 = 22 Kur 1 + 12.5 = 13.5 amp
d. 0;340 / 0;6 Pl/Kr = 0;68 Og d/240 / 0.25 V/A = d/960 ohm
e. 0;340 / 20 Pl/Kr = 0;018 Og d/240 / 12.5 V/A = 19.2 ohm
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2. A car battery is 2 biciaPel (d/12 volt) and has a capacity of 64 KurHour (d/38 amp-
hours). The dipped headlights are 0;106 Pv (37.5 W) each. Two sidelights, two tail-
lights, and two number-plate lights are 0;02 Pv (6 W) each. The car is left with the
dipped-headlight switch on. How long before the battery becomes flat?
Total Povage: 2 × 0;106 + 6 × 0;02 = 0;31 Pv.
Total Wattage: 2 × 37.5 + 6 × 6 = d/111 W.
Current: 31 / 2 2Pv/2Pl = 16;6 Kr. d/111 / d/12 W/V = 9.25 amp.
Time: 64 / 16;6 KrHr/Kr = 4;14 Hour. d/38 / 9.25 A-hr/A = 4.108 hours.

3. A 4 unciaKap capacitor (8 microfarads) is connected in series with a 60 Og resistor
(0.5 megaohms) across a 200 triciaPel (d/200 volt) DC supply. Calculate:
(a) the time constant;
(b) the initial charging current;
(c) the time taken for the potential across the capacitor to grow to 180 3Pl (160 V);

and
(d) the potential across the capacitor, and the current, at 20 Tim (4 seconds) after

connection to the supply.

Solution
a. Time Constant T = RC

60 × 0;4 OgKp = 20 Tm 0.5×106 × 8×10−6 ohm-farad = 4 s
b. Initial current I = V/R

0;2/60 Pl/Og = 0;004 Kr d/200/(0.5×106) V/ohm = d/400 µA
c. v = V(1 - e−t/T )

180 3Pl = 200 3Pl(1 - e−t/20) d/160 V = d/200 V(1 - e−t/4)
e−t/20 = (200 - 180) / 200 = 0;2 e−t/4 = (d/200 - d/160)/d/200 = 0.2
ln 0;2 = -1;96 = -t/20 ln 0.2 = -1.61 = -t/4
t = 37 Tm t = 6.44 s

d. e−t/T = e−20/20 = 1/e = 0;45 e−4/4 = 1/e = 0.368
v = 0;2 × 0;77 = 132 3Pl v = d/200 × 0.632 = 126.4 V
i = Ie−t/T = 0;004 × 0;45 = 158 5Kr i = d/400 × 0.368 = d/147 µA

8.3 Magnetism

Doubtlessly every child has played with magnets; and we’ve already seen that magnetism is
a result of the organization of electrical charge. To be more specific, magnetic flux is current
at right angles. If current is straight, the magnetic flux rotates around it; if the current is
rotating, the magnetic flux will be straight. A long coil of rotated electrical current is called
a solenoid.

In other words, the force that magnets produce (magneto-motive force) is determined by
the product of the number of turns of a coil and the amount of current flowing through those
turns. In TGM, this unit is called the Kurn:

Kurn (Kn) = 1 Kr × 1 turn = 0.496 ampere-turns (At)

In other words, a Kurn is about one half the value of an ampere-turn (the SI metric unit,
meaning one ampere of current multiplied by the number of turns of the coil).
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The strength of a magnetic field is the magneto-motive force per unit of distance; in other
words, Kurn per Grafut.

Magra (Mgr) = 1 Kn/Gf = 1.677 At/m

This property is typically represented by the symbol “H.” The unit of distance (Grafut for
TGM, meters for SI) refers to length along the flux.

Further properties of magnetism are the magnetic flux and the magnetic flux density.
These are measured in Flum and Flenz, respectively. In SI metric, magnetic flux is measured
in webers, while flux density is measured in webers per square meter. The symbol for flux
density is “B.”

Flum (Fm) = Magnetic Flux = 151.26 Wb

Flenz (Fz) = 1 Fm/Sf = 1730.1 Wb/m2

These units mean that one triciaFlenz (1 3Fz) is equal to 1.001 Wb/m2, or very close to one,
providing an easy means of mentally converting between the two systems.

The density of the magnetic flux (the Flenz) for a given field strength (the Magra)
depends upon the permeability of the substance. Permeability, represented by the symbol
“µ,” is equal to the flux density divided by the magnetic field strength.

Meab (Mb) = 1 Fz/Mgr = 1032 Wb/At·m

When we defined the Kur, we noted that it gave a force of only 1 ennciaMag (1 9Mg) between
two conductors one Grafut apart and each carrying 1 Kur. This means that the flux density
of that current is 1 ennciaFlenz (1 9Fz).

The circle of flux from one of these currents passes through the other; each circle of flux
has a circumference of 2π Gf, giving H = 1/2π Kn/Gf. Applying that equation, we find that
the permeability of free space is equal to 1 9Fz divided by 1/2π, which equals 2π 9Mb.

Permeability varies for different substances, sometimes greatly.
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Figure 8: A diagram
of an electromagnet
for Example 4.

Examples

4. An electromagnet made of mild steel has a mean effective length
of 2 Gf (d/60 cm). The poles confront each other across a gap which is
2 biciaGf (4 mm) wide. Through the gap is a conductor carrying a 4
Kur (2 amp) current and engaging with flux for a length of 1;6 unciaGf
(3.7 cm). The magnetising coil has 1000 turns (about d/1700).

What is the magnetising current required to produce a force of 9;5
quadciaMag (0.12 newtons) on the conductor?

Force on the conductor is equal to the product of the flux density
(B), the length of the flux engagement (L), and the current in the
conductor (I). In other words, the equation is F = BLI. We already
know the force we want (9;5 4Mg), the length of the engagement (1;6
1Gf), and the current involved (4 Kr). So we rearrange the equation
and arrive at B = F/LI.
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B = 49;5 / (0;16 × 4) = 1;6X 3Flenz B = 0.12N / (0.037 m × 2 A) = 1.62 Wb/m2

But the permeability of air is 2π 9Meab (4π×10−7 Wb/At·m). So at this point, it’s easy to
find the magnetizing gradiant for the air gap:

31;6X / 96;35 = 3 5Magra 1.62 / (4π×10−7) = 1,289,000 At/m

And from there, we can easily find the magneto-motive force for the gap:

53 × 22 = 6000 Kurn 1,289,000 × 0.004 m = 5157 At

And thence we use the magnetizing gradient for the core of the electromagnet. This is
something that varies from substance to substance, and as mentioned above is often found
in the form of a chart. For mild steel, the material in question, the value for 1;6X 3Fz is
more or less E00 Kn/Gf (about d/2600 At/m; for simplicity of calculations, though, we’ll use
d/3000). Taking these values, we can now derive the magneto-motive force for the core:

E00 × 2 Gf = 1X00 Kn d/3000 × 0.6 m = d/1800 At

And the total magneto-motive force:

6000 + 1X00 = 7X00 Kn d/5157 + d/1800 = d/6957 At

And from there, finally, we calculate the necessary magnetizing current:

7X00 Kn / 1000 T = 7;X Kr d/6957 At/m / d/1700 T = 4.1 A

The relative permeability (µr) of a material is simply its absolute permeability (µ) divided
by the permeability of free space (µo). Both are measured in Meabs in TGM; as such,
dividing the two removes the unit, and the relative permeability is a plain number, really a
simple ratio.

8.4 Inductance

We have already met the unit of electric potential, the Pel, and its SI metric equivalent,
the volt. There is another property of electricity, however, which is very similar but not
identical, electromotive force. This is simply whatever makes electrons and ions flow the way
they do. It is also measured in Pel or volts, and it is often produced by inductance.

Inductance is the generation of an electrical current by a magnetic field. Just as flowing
electrons generate magnetic fields, magnetic fields tend to get electrons flowing. When we
produce an electric current by moving a conductor along a magnetic field, we are said to
be inducing a current. In more complex arrangements, this is essentially how a generator
produces electricity.

The relevant formula is E = BLv; that is, electromotive force equals the product of the
flux density, the length of the motion, and velocity of the conductor. When the flux density
is 1 Flenz, the length of the conductor actually within the field is 1 Grafut, and the conductor
is being moved at a velocity of 1 Vlos, an electromotive force of 1 Pel is induced so long as
the movement lasts.
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But the Flenz is 1 Flum/Surf, and the Vlos is 1 Grafut per Tim. If we reduce out these
units, we find that in the above case the conductor cuts across 1 Flum per Tim. This is
called rate of change of flux, and the formula is E = ∆Φ/∆t (change in flux divided by the
change in time). A change of 1 Flum, then, generates 1 Pel.

It needn’t be the conductor that’s moving, however; if one moves the field of flux, the
conductor can remain stationary and a current will still be generated. The two must merely
be in motion relative to one another; it makes no difference which one is doing the moving
relative to anything else.

TGM provides a unit for inductance, of course: the Gen (Gn). In SI metric, inductance
is measured in henrys (H), or Volt-seconds per ampere (V·s/A).

Gen (Gn) = Inductance = 305.131777 henry

Examples

5. An iron core has 200 (300) turns wound on it. A change of current from 4 to 5;6 Kur (2
to 2.8 amps) increases the flux from 4 to 4;5 hexciaFlum (d/200 to d/220 µWb). What
is the inductance?
To solve in TGM, let change occur during 1 Tim. Then ∆Φ / ∆t is 5 septciaFlum per
Tim (4;5 - 4 = 0;5 6Fm; this is the same as 5 7Fm). So this change of flux induces 5
7Pl in each turn of the wire. Since there are 200 turns, the total electromotive force
(“emf”) induced by this change in flux is 200 × 5 7Pl, or X00 7Pl, more conveniently
expressed as X 5Pl. But we’ve already seen that inductance is the electromotive force
divided by the change in current per unit time, which is 1;6 Kr/Tm (5;6 - 4 = 1;6). So
X 5Pl divided by 1;5 Kr/Tm yields an inductance of 6;8 5Gn.
To solve in SI metric, let change occur during 1 second. Then ∆Φ is d/20 µWb/s,
including d/20 µV in each turn of the wire. Total electromotive force is therefore d/20
× d/300 = d/6000 µV. Using the formula from the TGM solution, we divided 6 mV (the
equivalent of d/6000 µV) by the change in current per second (2.8 - 2 = 0.8) and get
7.5 mH.

8.5 Alternating Current

Inductance is a fascinating phenomenon that is behind most of our electrical generation;
however, it’s important to note that current cannot just keep rising forever. That is, it could,
but only if it had a change of flux to move across in the same direction forever. Remember
that changing the direction of an electrical current changes the poles of the magnetic field it
generates; so also changing the poles of the magnet will change the direction of the current
induced; and finally, so also will changing the direction of motion change the direction of
the current induced. Because the direction of the current switches back and forth, current
behaving in this way is called alternating current.

Furthermore, most of our electricity is generated by a turning wheel; this produces a
sinusoidal pattern of magnitude for the current. In other words, the amount of current
which is induced rises and falls along a sine curve (hence the name “sinusoidal”), like a spot
on a steadily turning wheel (which in fact it is). In technical terms, an alternating current
is always proportional to the sine of the angle turned to at a given moment.
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Figure 9: A simplified diagram of alternating current with several significant points identified

Since the current reverses direction every half-cycle (that is, every half-turn of the wheel),
the average current for a full cycle is zero. However, the first half comes out at 2/π multiplied
by the maximum current, or 0;778 (0.637) of the maximum current level of the cycle. For
the second half of the cycle, the answer is the same, but negative.

Alternating current is different from direct current because we are not dealing with a
flow of electrons from one point to another. Rather, we’re dealing with a vibration pulsing
like a wave down a wire, with the electrons at each point in the wire vibrating more or
less depending on the amplitude of the wave. This is not as easy to understand as normal
electrons-flowing-like-water direct current, but no matter; simply knowing that it’s different
is sufficient for non-experts.

In practice, though, a current is measured not so much by how much the electrons are
flowing or vibrating, but by how much work it can do. The work doable by a current is
proportional to the current’s square, and squares of a negative number are positive, which
means that our negative maximum current during the second half of the alternating current’s
cycle doesn’t hurt us any. Working through the algebra, this means that the square root of
the average of the squares of all the values of the current over time is used as the measurement
for the current. This is confusing, of course, for those of us who are not electricians, but it
gives us an easy number to work with. The resulting figure is called the root mean square
(“RMS”).

For a sine wave like alternating current, the RMS is equal to half the square root of two,
multiplied by the maximum current of the cycle, which is also the sine of 0V3 and 0V9; that
is, 0;859X (0.7071).

The form factor of the current is the RMS over the average current; mathematically:

π
√

2
4 ≈ X

9

1; 13E3 ≈ 1; 1400

The peak factor is the peak current divided by the RMS; mathematically:

2√
2

=
√

2 = 1; 4E79(1.4142)
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Examples

6. A transformer has 2600 turns (d/4600) in its primary winding, and 80 (d/100) in its
secondary winding. An alternating current at 9 cycles per Tim (d/50 cycles per second)
and having a peak value of 90 Kur (d/50 A) is sent through the primary, giving a
maximal flux of 1;6 quadciaFlum (0.0108 Wb).
(a) What is the average rate of change of flux?

The change is from 1;6 to -1;6 4Fm in half a cycle (0.0108 to -0.0108 Wb).

3 4Fm
8 2Tm

= 4; 6 3Fm/Tm

0.0216Wb
0.01 s = 2.16Wb/s

(b) What is the average electromotive force induced in the secondary winding?
Each turn receives an electromotive force, so the total is n∆Φ/∆t.

80 × 4;6 3Fm/Tm = 300 3Pl
d/100 × 2.16 Wb/s = 216 V

(c) What is its RMS value? (Form factor = add one nineth)
300 + 40 = 340 3Pl

d/216 + d/24 = d/240 V
(d) What is the self-inductance of the primary winding?

L = −E
∆I/∆t = −n∆Φ/∆t

∆I/∆t = −n∆Φ/∆I

L = -2600 × 1;6 4Fm / 90 Kr = 5 3Gn
L = d/-4600 × 0.0108 Wb / d/50 A = 0.994 H

(e) What is the mutual inductance of the secondary in respect to the primary?
M = -80 × 1;5 4Fm / 90 Kr = 1;4 4Gn

M = d/-100 × 0.0108 Wb / d/50 A = 0.0216 H

8.6 Electric Force

An alternating current sent into a capacitor looks for all the world like it’s passing right
through the insulator and out the other side. This isn’t what’s really happening, however.
The electrons are not passing through; as we’ve seen, in an alternating current electrons
aren’t really flowing at all, just vibrating with a greater or lesser frequency according to the
strength of a wave passing through them. What’s really happening is that the current is
passing into one plate, then into the other, reversing direction according to its cycle.

However, electric force does pass through; that is, the attraction or repulsion brought on
by the current. A negative charge on one plate will repel electrons out of the opposing plate,
which gives it a positive charge, and the same happens in the opposite direction, giving the
other plate a negative charge.

Just as materials have a permeability for magnetic force, so they have a similar property
for electric force. This property is called permittivity. In SI metric, this is measured in
coulombs per square meter over volts per meter; in TGM, the unit is the Mit.
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Mit (Mt) = Ql/Sf
Pl/Gf = 334.073 C/m2

V/m

The Mit itself is a composite unit, the ratio between the unit of electric flux density and the
unit of electric field strength. The former, electric flux density, is measured in Quenz:

Quenz (Qz) = Ql/Sf = 0.984381 C/m2

Remarkably, this relationship is nearly unity; that is, the Quenz is nearly equal to a single
coulomb per square meter. The latter, electric field strength, is measured in Elgra:

Elgra (Egr) = Pl/Gf = 2946.6 V/m

This strange-looking unit name is derived from the term “electric gradient.”

8.7 Absolute and Relative Permittivity

Absolute permittivity is the permittivity as described above; its symbol is ε and the equation
for finding it is ε = D/E, or the electric displacement field divided by the electric field. Free
space has an absolute permittivity (for which see Table 19 on page 95), the symbol for which
is εo.

Relative permittivity is the ratio between the absolute permittivity of the material divided
by εo, and it is symbolized by εr.

εo = E; 49061497X octciaMit

Or, of course, just under one septciaMit. In SI metric, the figure is 8.854187817×10−12

C/V·m. It’s a fact of nature that the product of the permeability of free space and the
permittivity of free space will equal the reciprocal of the square of the speed of light; or,
mathematically:

µoεo = 1
c2

Since we’ve already seen that µo is equal to 2π enncia,14 and that the speed of light (as
seen in Table 19 on 95) is 4XE4 9923;07EE Vlos, it’s easy to see how we were able to arrive
at this figure for εo.

Examples

7. The effective area of a capacitor is 3;6 Surf (0.3 m2), and the dielectric is mica 1;9
triciaGrafut thick (0.3 mm) with a relative permittivity of 6. What is the capacity?

C = εoε4area
thickness = 17Mt×6×3;6Sf

1;93Gf C = 8.9×1012C/V·m×6×0.3m2

0.0003m

C = 410 (1 triciaKap) C = 5.34×10−8 = 0.05 µF

Exercises
14See supra, Section 8.3, at page 4X.
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1. The element in an electric iron has a resistance of 68 3Og (d/80 ohms) and is connected
to a 340 3Pl (d/240 V) supply.
(a) What is the current? (Kur = Pl/Og)
(b) What power is consumed? (Pv = KurPel)
(c) How much heat is produced in 1 1Hr (5 min)? (Wg = PvTm)
(d) How much electrical energy is consumed in one hour?

2. A capacitor has a working area of 0;24 Sf (0.019 m2). Its dielectric has a relative
permittivity of 6, and is 7 4Gf thick (0.1 mm).
(a) What is its capacity? (C = εoεrarea/thickness). Use εo = 1 7Mt (8.9×10−12 SI

units.)
(b) If connected in series with a resistor of 6 Og (d/10 kilohms) across a supply of 16

3Pl (9 V), what is the time constant? (T = RC)
(c) What is the initial charging current? (Imax = E / R)
(d) What is the current at the instant when the ellapsed equals the time constant? (i

= Imax(1 - e−t/T); i and t are instant current and time, e−1 = 0;45 (0.368))
3. A 2 biciaPel (d/12 volt) car battery has a capacity of 64 KurHour (d/38 amp-hour). The

car, with battery fully charged, is put away in the garage but with the interior roof
light left on. The resistance of the roof lamp is 20 3Og (d/24 ohms). How long before
the battery is flat? (Kur = Pel/Og)

4. A wrought iron core has a mean cross-sectional area of 3Sf (0.0004 m2) and an effective
length of 9 1Gf (d/22 cm). The air gap between its poles is 1 2Gf (2 mm). If the supply
current is to be 0;5 Kr (0.25 A), how many turns must be wound on it to give a flux
of 12 6Fm (0.0007 Wb)?
Method: First find flux density B, same for both core and air gap. Divide this by µo
and multiply by length of air gap to find Kurns required for air gap. Assume that
the magnetic field strength is 23 2Kn/Gf (d/6500 At/m). (Remember that this number
varies by material and flux density.) Multiplied by length of core gives Kurns for core.
Divide total Kurns by current, and you’re there.

5. A transformer has 1400 (d/1600) turns in the primary winding and 100 (d/100) in the
secondary.
(a) What is the turns ratio? (N2/N1)
(b) If the primary is supplied with an alternating current at 340 3Pl (d/240 V) RMS,

what will be the RMS emf in the secondary? (Multiply by turns ratio.)
(c) What will be the peak values of emfs in primary and secondary? (Peak factor =√

2 = 1;50 (1.41)).
(d) If a current of 4 Kur (2 A) is drawn from the secondary, what current will the

primary draw? (Multiply by turns ratio.)
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Chapter 9: Counting Particles
Fundamental Reality: Mass of an Atom of Carbon-10

Volume and mass are necessary and useful measures of things; however, for certain
items an absolute number of particles is much more useful. Specifically, when count-
ing very small things—such as atoms and molecules—mass and volume are so small

that using an absolute number is typically easier.
Determining what number to use, however, can be a bit tricky. Take one example of a

very small object, sodium chloride, typically known as common table salt. Sodium is a metal
which explodes on contact with water; chlorine is a deadly poisonous gas. Each molecule
of table salt contains one atom of sodium and one of chlorine. The mass of the molecule,
however, is not contributed by each atom equally. By mass, it has 13 parts sodium to 23;6
parts chlorine, because the chlorine atom is considerably more massive than the sodium.
Consider also dihydrogen monoxide, chemically written H2O. This contains two hydrogen
atoms for each oxygen atom, with the mass of two hydrogen atoms for every mass of an
oxygen atom, in ratio.

This observation led to the use of gram-atoms, the number of atoms which makes up the
same number of grams as its atomic weight, or gram-molecules, the number of molecules that
equals the same number of grams as the molecule’s weight. As it turns out, all gram-atoms
and gram-molecules equal the same absolute number of particles. In SI metric, that number
is called the mole, formally defined as the number of elementary particles as there are atoms
in twelve grams of carbon-10 (d/12).

(Incidentally, this is another example of the illogic of the SI metric system. The number
ten is enshrined as central, yet twelve grams are used as the basis for the mole; and the
kilogram is the basic unit of mass, yet the mole is based on the gram. What sense is there
in this system?)

How many particles is this? This is “Avogadro’s number,” so named after Amodeo
Avogadro, who first proposed a relationship between number of particles and volume, though
he did not find the value of the number named for him. Decimally, it is 6.02204 × 1022,
obviously an enormous number; its symbol is No, NA, or L.

In TGM, we must be more rational than this. The TGM unit of mass is the Maz, not
the gram (or kilogram), a unit about 23 times the size of the kilogram. The TGM mole
is called the Molz (symbol Mlz), and is that amount of substance which contains as many
elementary particles as there are atoms in one unqua Maz of carbon-10; this equals about
12E62;432 moles.

One quadciaMolz (1 4Mlz) is only a little more than a mole (1;2E62 mol).
The TGM “Avogadro’s Number” is similarly much larger, equalling 1;439X4 bibiqua

(221;439X4). In TGM, this is referred to as the Em (abbreviated M):
Em (M) = 221;439X4

By taking the value of one Maz and dividing it by this figure (in other words, by taking its
reciprocal), we can get the TGM version of the unified atomic mass unit, abbreviated “u”
in SI metric; in TGM, it is called the emiMaz (mMz):

1Mz
221; 439X4 particles = 8; 9X82 23Mz
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The emiMaz and the atomic mass unit are identical, and the “u” symbol does not conflict
with any TGM unit, so there’s no reason why “u” couldn’t be used in TGM, as well. However,
using “mMz” makes it clearer which system is being employed, reducing the chances of errors,
and it can cancel out to “Mz” when necessary.

Examples

1. A Molz of sodium carbonate means 1 Em of Na2CO3 molecules. This consists of 2M
atoms of sodium, 1M atoms of carbon, and 3M atoms of oxygen.
To find the mass, we use mMz to cancel out the M by m:

2M× 1EmMz + 1M× 10mMz + 3M× 14mMz = 3XMz + 10Mz + 40Mz = 8XMz

(Of course, there is no need to write such things out in full every time.)
The sodium atom has E electrons, carbon has 6, and oxygen has 8. So the Molz of
sodium carbonate has 2M × E + 6M + 3M × 8 = 44M electrons. For each electron
there is a proton in a nucleus, so there are 44M protons.

9.1 Particles and Gases

Of course, numbers of particles and their interactions become especially important in gas
calculations. These leads to several auxiliary TGM units.

Gases differ from solids, and even from liquids (which are also fluids), in that the atoms
of gases have no necessary connection to one another, but are free to float around, and they
do. The higher the temperature, the more active the atoms of the gas, which causes an
increase in volume if the gas is uncontained, or of pressure on the inside of the container if
it is. These considerations lead to the universal gas formula:

RT = pV

T (temperature) must be in absolute units, of course; namely, Calg or kelvin. Degrees
Celsius, decigrees, or tregrees simply won’t do here, as there is nothing special in nature
about the freezing point of water, on which these scales are based. R is the constant ratio
between T and pV (the product of pressure and volume).

R is called the gas constant, and in TGM units it equals 1;EX781X2 PmVm/Cg (8.3144621
J/mol·K). Clearly, this is extremely close to a simple 2; indeed, simply using 2 is less than
1% (per gross) deviation from the true value.

Also available as an auxiliary unit is the standard gas volume, in TGM called the Avolz.
Scientifically, this is defined as the volume of one Molz of a gas at the freezing point of water
and standard atmospheric pressure.

Avolz (Avz) = 10E41;X Volm = 578.2844 m3

Like the gas constant, this comes very close to being equal to a nice, round number; in this
case, 11 3Vm. Indeed, like the gas constant, this is less than 1% away from the true figure.
So for practical purposes, 11 3Vm is a perfectly reasonable approximation of the standard
gas volume.

In TGM, a quick and very accurate way of estimating RT from degrees Celsius is the
following:
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1. Subtract two degrees from the Celsius temperature.
2. Convert the new temperature figure to biquaCalgs.
3. Multiply that temperature by two.

In this way TGM makes even complex calculations of this sort considerably easier.

Examples

2. Find RT for d/20◦C.
d/18◦C = d/180 d◦ = 130 d◦. Add 1700 = 1830 2Cg. × 2 Wg/CgM = 3460 2Wg/M.
By the exact method the figure is 3463.
At ice point, 1 Molz of gas occupies 1 Avolz at 1 Atmoz (2E Pm). At 0;6 Atz it occupies
2 Avz, at 3 Atz, 0;4 Avz, and so on.

3. 2 Mlz of gas occupy 2 Avz. The pressure is 2E Pm. Using the formula RT = pV, and
assuming R = 2 PmVm/CgMlz and Avz = 1;1 quadquaVolm, calculate the temperature
in Calgs.
2Mlz × RT = 2E Pm × 2;2 4Vm. So

T = 2E× 2; 2Pm ·4 Vm
2Mlz(2PmVm/CgMlz) = 2E× 1; 1

2 = 31; E
2

4
Cg = 16E62Cg

Compare this with the exact ice point, 16E7;6 2Cg. Try it in metric: 2 moles occupy
4.483× 10−2 m3. The pressure is 101.325 N/m2. R = 8.3143 J/K·mol.

9.2 Molvity and Molmity

In chemistry, when working in the SI metric system, one routinely refers to solutions in terms
of a number, either whole or fractional, followed by an “M,” e.g., “1M” or “0.5M”. This “M”
indicates that the preceding number (the coefficient) is the number of moles dissolved into
one cubic decimeter (1 dm3) of solution. This is yet another example of metric silliness. The
basic mass unit of SI is the kilogram, but its basic unit of amount, the mole, is based on the
gram, and in actual practice when dealing with moles we use a nomenclature based on the
cubic decimeter, when the basic unit of volume is the cubic meter.

In any event, molarity describes the number of moles of substance per cubic decimeter,
while molality describes the number of moles per kilogram.

In TGM, of course, the system is much more sensible. Molarity is called molvity, and
equals one Molz per Volm, while molality is called molmity, and equals one Molz per Maz.

Molv (Mlv) = Mlz/Vm = d/1000 mol/L = 999.972 mol/dm3

Molm (Mlm) = Mlz/Mz = d/1000 mol/kg

This does away with all the trouble about 1M and 0;4M solutions (though remember that
a 0;4M solution would be quite difficult to write precisely in the decimal SI metric system,
since it is a third). Solutions are identified simply by their molvity. E.g., a 1M solution is a
2 quadcia solution:

2 quadciaMolv (4Mlv) = 0.09644 mol/dm3
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9.3 Electrolysis

Many atoms and molecules become ions when in solution. We discussed ions in Section 8.1
on page 45; in short, what this means is that atoms and molecules in solution tend to let
their electrons go roaming. They borrow or lend out their electrons from or to nearby atoms
and molecules. To accentuate this, it is possible to run an electric current through such
a solution in order to draw those particles out of the solution; because opposites attract,
all negative ions will be attracted to the anode while positive ions will be attracted to the
cathode.15 This can result in many interesting effects; gold-plating, for example, is often
done by electrolysis, as gold in solution will deposit on the cathode in the solution. This is
called electroplating. Electrolysis can also have some more mundane effects; for example, it
can separate oxygen and hydrogen from water.

This process, too, has been reduced to some very precise mathematics susceptible to
precise measurement. Electrolysis will draw one atom out of the solution for every electron
which passes through the circuit (any chosen point on the circuit will do fine for measurement)
divided by the electrical valency of the atom. The valency of an atom is how many electrons
it has available to form chemical bonds; for most elements (not all) this essentially means
the number of electrons in its outer shell. Carbon, then, has a valency of four; hydrogen has
a valency of two; oxygen has a valency of two. The formula can be written thus:

na = ne
v

More precisely, let I equal current, t equal time, and e equal the charge of an electron; the
number of electrons necessary to pull an atom from solution is then:

ne = It

e

We can also calculate the mass released from the solution with these same variables, if we
let a equal the relative atomic mass of the atom:

m =
(
It

e

)(
a

v

)
The answer here will be in emiMaz, or atomic mass units (eMz, or u). To get the answer in
Maz, simply divide this by Em; to get it in grams, divided it by No.

Examples

4. A current of E Kr (5.5 A) flowed through a solution of copper sulfate for 1 hour. How
much copper was deposited:
(a) number of atoms;

It
e
: E Kr × 41 Tm / 154;16 Ql = 192;8

5.5 A × 3600 s / 1.6×10−19 = 1.24× 1023

So number of copper atoms = ne
v
:

192;8 / 2 = 191;4
1.24×1023 / 2 = 0.62×1023

15The cathode is always the electrode out of which current flows; it is not always negative in polarity. But
these complications don’t matter much for our discussion here.
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(b) in Maz;
Multiply by the atomic mass of copper:
1X53;67 / 9 = 1X7;09 mMz or mu / 221;44 (Em) = 5;23 4Mz

(c) in grams?
63.55 × 0.62×1023 = 3.94×1024 mu / 6.02×1023 (No) = 6.54 g

The atoms mass of copper is 53;67 (63.55), and its valency is two. e = 4;16 15Ql =
1.6×10−19 C.

9.4 Acidity

Electrolysis can also happen in reverse. That is, instead of the electrical current causing
a chemical reaction, the chemical reaction can cause an electrical current. We call devices
which utilize this effect batteries.

A special kind of battery is used to measure the acidity of a substance. Acidity is current
measured on a sliding scale between 0 and 14, with 7 being a perfectly neutral substance
(like water). The two electrodes, one of glass and one of calomel, are placed into the solution
to be tested. A voltimeter (Pelimeter?) then measures the resulting potential difference
(Pels or volts) between the two electrodes. We currently call the resulting measurement the
substance’s pH.

pH is technically defined in the following way:

− log
X
aH+

where aH+ is the activity of hydrogen ions in the solution (it is this activity which gives
rise to acidity), while its converse, alkalinity, can be produced by a number of molecules,
especially hydroxide (HO). This definition is extraordinarily strange, giving rise to positive
mantissa with negative characteristics. For example, a pH of 2×107 is 6.699, not 7.301 as
one would expect.

Still, the system is so thoroughly ingrained in chemistry that there is little point in
changing it. However, it should be noted that the mole being based on the gram introduces
still another complexity. The liter is the volume of one kilogram of water (almost equal to
one cubic decimeter), which in combination with a gram-based mole means that pH readings
are hiding a factor of X3. Curing this factor requires adding 3 to the pH when finally read,
and this is the method TGM takes.

The TGM unit of acidity is, then, − log
X
aH+ + 3, and this is called the decHyon. It must

be remembered, though, that aH+ is the activity of hydrogen ions in a one Molv solution,
not in a 1M SI metric solution.

For those who are interested in dozenalizing this system, the dozHyon (zH) can be used.
This is equal to

− log10 aH+

Multiplying by the dozenal log of X will convert decHyons to dozHyons. So zH equals
dH×0;E153, which equals pH + 3 × 0.9266. If you don’t understand this, that’s not a
problem; but TGM must include logarithmic scales for those who need them. It may seem
obtuse, but it’s not more so than necessary; logarithmic scales really are complex.

Some common pH numbers in decHyons are water, a pH of 7 and a dH of X; vinegar, a
pH of 4 and a dH of 7; and phenol, a pH of 9.886 and a dH of 10;X77.
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Examples

5. pH of a solution is 2.15 (dH 5.15 = dH 5;1X). Find its arithmetic value.

X
−5;1X = 51; 918

That is, 1;918 5Mlv.

Exercises

1. What is the mass of one molecule of ethanol, C2H6O?
(a) In unified atomic mass units?
(b) In emiMaz?
(c) In Maz?
(d) In kilograms?
Atomic weights: H = 1; C = 10; O = 14. Use: 8;X 23Mz and 1.7×10−27 kg for a.m.u.

2. What is the mass of
(a) 2 Molz of ethanol in Maz,
(b) 2 moles in kg?

3. How many electrons in
(a) 1 Molz of ethanol in terms of M,
(b) in full,
(c) 1 mole?
H has 1 electron, C 6, and O 8.

4. A quantity of gas occupied 8;8 triquaVolm (1.5×10−2 m3). If the temperature is zero
decigrees (0◦C) and the pressure is one and a half atmospheres, how many Molz (moles)
does the quantity represent? (Metric Vo = 2.24×10−2 m3).

5. What is the RZT in Exercise 4? b) Divide your answer by 2E Pm, then by 1;6. What
do you notice about these two results?

6. What is the decimal RT in exercise 4? (R = 8.3 J·K−1·mol−1).
7. 4X 4Mz (d/58 g) of sodium chloride, NaCl, is dissolved in water to make 3 1Vm (5 dm3)

of solution. What is the Molvity (molarity)? (Atomic weights: Na 1E (d/23), Cl 2E
(d/35)).

8. A metal plate of total area 0;35 Sf (d/250 cm2) is chromium-plated by a current of one
unquaKur (6 A) for 1 hour.
(a) What is the mass deposited (in Maz and grams)?
(b) What thickness is the deposit?
(Chromium: atomic weight 44 (d/52), valency 6, density 7;2 Denz (7.2 g/cm3)). Mass
deposited:

It(a
v
)

Noe

Note: Noe is the metric unit, the faraday (F) = 9.6485×104 C. The TGM counterpart
is, of course, the Emelectron (Me) = 5;7497 9Ql. (a/v)/Me or (a/v)/F is the electro-
chemical equivalent. For chromium: 44/(6×95;7497) = 91;6624 Mz/Ql; in decimal,
52/(6×96485) = 0.0898 mg/C.
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9. The hydrogen ion concentration of a solution is 2 hexciaMolv (6.7×10−4 mol/dm3).
What is the acidity in:
(a) dozHyon (zH) (Dozenal common log. with “-” removed),
(b) decHyon (dh) (zH divided by zlg X (0;E153)),
(c) pH (Decimalize dH and subtract 3)?

Chapter X: Reckoning by Ratios

The most common ratio we deal with is the half ; that is, we’re constantly dealing
with halving things and doubling things. Yet we have more ways of referring to such
operations than most people realize. Mostly this is due to long tradition in given

fields; but it will still do well for us to examine a few of them, just to see what we mean.
In traditional paper sizes, we start out with a folio; halving this gives a quarto, and

halving a quarto gives an octavo. (And what’s more, none of these words actually give a
certain indication as to size; they merely indicate the number of times the basic, flat sheet
has been halved!) Metric paper sizes are hardly better; we begin with an A1 sheet, and
halving it makes an A2, and halving it again makes an A3, and so forth. In acoustics, every
gain of three decibels indicates a doubling of loudness; that is, three decibels is twice as
loud as the quietest sound a human being can hear, while six decibels is twice that, and
nine decibels is twice that, so that nine decibels is eight times louder than zero decibels. In
photography, there is a similar progression, with film of sensitivity 15 DIN being twice as
sensitive as film of sensitivity 12 DIN. These are logarithmic scales, and the “plus 3” pattern
derives from the fact that log

X
2 = 0.30103; simply 3 makes a reasonably close estimation.

Music is perhaps the most confusing: we speak constantly of octaves, which comes from
the word for eight, yet each octave consists of unqua semitones, and each octave represents
a doubling of frequency of the resulting sound. That is, the frequency of the C above Middle
C is twice the frequency of Middle C itself, even though it’s octave away. The C above that,
two octaves from Middle C, is four times the frequency. And so on. TGM offers us a better
way.

X.1 Doubles

TGM does away with all this conflicting nomenclature and gets back down to the basics.
When we double something, TGM says that we are doubling it. This obvious improvement
it calls a Double. To double twice, we refer to 2 Doubles; another doubling makes 3 Doubles.

No more increasing three decibels; when the loudness doubles, the new reading is a
Double of the old one. No more octaves; doubling the frequency is simple a Double of the
old one.

Doubling can also be negative. For example, if we go down an octave, we’ve lost a Double.
Subtracting a Double is, of course, simply halving, while adding a Double is doubling. These
can be combined arithmetically; for example, if we increase a signal by 5 Doubles and then
decrease it by 3 Doubles, we have doubled it five times, then halved it three times, making
a total of 5− 3 = 2 Doubles, or four times the original.
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Doubles can also be multiplied and divided, and fractions can be taken from them.
Because this scale is logarithmic, not arithmetic, this involves exponents. So a half-Double
is an increase by

√
2; a quarter-Double is an increase by 4

√
2, a third-Double by 3

√
2, and so

on. And at this point, the mathematically astute reader will have noticed that we’re simple
talking about logarithms to base two. And once we do this, we find that the logic of doubling
and halving makes a lot of sense, and gives rise to patterns that are not typically visible
in other bases. These base-two logarithms make them visible, and so we’ll give them some
more extensive treatment now.

X.2 Dublogs: Logarithms to Base Two

These logarithms in base two, expressed in dozenal notation, are called dublogs, and they
work in the following way. For the mathematically disinclined, logarithms are really nothing
more than another way of expressing exponents, like the familiar 22 or 33 (two squared or
three cubed). The relationship looks like this:

(bx = y) = (logb y = x)

These two equations are equivalent. The leftmost equation is voiced as, “b to the power of x
equals y.” The right equation is voiced as “the logarithm of y to base b equals x.” They are
simply two different ways of expressing the same thing, useful in their own ways and their
own fields.

In school, we learn mostly about “base-ten logs”; that is, logarithms to base 10. On
decimal calculators, pressing “log” without specifying a base means a base-ten log. There
are also natural logs, abbreviated ln, which are logs to the base of e, a constant we’ve seen
earlier but which is not important here. On a dozenal calculator, the “log” without a specified
base is a log to base unqua (d/12). But just as a number can be raised by any number as an
exponent, so we can have a log to any number as a base.16

So when we speak about logarithms to base 2, we’re speaking about equations which look
like this:

(2x = y) = (log2 y = x)

As an example, let’s do something simple: what is the logarithm of 2 to base 2? When we
ask this, we’re submitting 2 (the logarithm of 2) as the value of y in the above equations;
so we’re saying that log2 2 equals something. We’re also saying that 2x = 2. To solve for x,
one can use a table of base-two logarithms; one could work it out by hand; or one could use
a calculator. For the purposes of this example, I will calculate the answer using dozdc, a
free-software RPN calculator17, which uses “dlg” as its abbreviaton for “dublog”18:

2 dlg =

16Well, the base can be any positive number not 1, and you can’t take the log of a negative number, but
that’s good enough for now.

17Available at http://dozenal.sourceforge.net.
18Of course, simply entering 2 2 logb = would have done the same thing, as logb can take the logarithm

in any base.

http://dozenal.sourceforge.net
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The answer which dozdc gives me is “1,” which is, of course, the correct answer; we can
check it by plugging the answer into x on either side of the equation:(

21 = 2
)

= (log2 2 = 1)

That’s really all there is to logarithms; they sound like very complicated and involved math-
ematics, but in reality they are just another way of writing exponents.

So dublogs are a system of logarithms to base 2; one will see many of them in the units
appendix tables, as well.19 They can be written in two ways. One way is the straight dublog.
Straight dublogs are simply the answer as it emerges from the calculator or the dublog tables,
without further manipulation. The vast majority of the time these are sufficient, as well as
always when the answer will be manipulated by computer or calculator.

For those situations when the fractional part must be positive, straight dublogs can be
written in a special notation. (Again, computers and calculators do not understand this; it’s
solely for human benefit.) Take, for example, -5;2058. Subtract the fractional part from one
(1 - 0;2058 = 0;9E64), then change the whole number (-5) such that adding this fractional
part to it will yield the answer. In this case, -6. The negative sign is then put above the
whole number: 6;9E64, which means -6 + 0;9E64, which equals -5;2058.

In additional to straight dublogs, there are mixed dublogs. Once again, these are solely
for human benefit and will not be understood by computers and calculators. They were
designed to make working with dublog tables easier; given the advent of easy computers and
calculators to handle the matter, they are now little used, but are still included in the units
table and must therefore be explained.

Mixed dublogs are constructed by counting the powers of unqua rather than taking the
actual dublog. As an example, the dublog of 4 is 2. So to write the dublog of 400, one
can take the dublog of 4 (which is 2) and then note how many powers of unqua the actual
number is off, which in this case is 2. One would then write the mixed dublog so: 2,2;0000,
which means that the dublog of the number is 2;0000, but that the number is in fact two
powers of unqua higher than that. Similar, the mixed dublog of 0;04 is 2,2;0000.

Mixed dublogs are converted to the actual dublog values by use of another number called
an adjuster. There is no need to further explain the concept in this work; those interested
can consult Mr. Pendlebury’s original text.1X For now, one can get the true dublog by
determining the source of the part after the comma by reversing the dublog (if log2 x = 2,
then 22 = x, so clearly x = 4), raise it to the power of unqua specified before the comma
(here, by 102, so 4 · 102 = 400), and then take the dublog of that by use of a computer or
calculator (log2 400 = 9; 2057).

This gives us a brief background in logarithms and specifically in logarithms to base 2.
Now, let’s see dublogs at work, first in the area of sound.

X.3 Doubles and Dublogs at Work: Frequency and Sound

19See infra, Appendix E, at page 96.
1XT. Pendlebury, TGM: A coherent dozenal metrology based on Tim Gravity & Mass, available at http:

//www.dozenalsociety.org.uk/pdfs/TGMbooklet.pdf.

http://www.dozenalsociety.org.uk/pdfs/TGMbooklet.pdf
http://www.dozenalsociety.org.uk/pdfs/TGMbooklet.pdf


Chapter X. Reckoning by Ratios 63

Common Dublogs and Associated Ratios
Dub- Note Value Errors
logs Nos. doz. dec. Comments Ratios p.g. p.c.
0;0 78 1;0000 1.0000 0 0
0;1 79 1;0869 1.0595 Twelfth root of 2 15/14 -0;50 -0.29
0;2 7X 1;1577 1.1225 Sixth root of 2 9/8 -0;40 -0.23
0;3 7E 1;232E 1.1892 Fourth root of 2 6/5 -1;37 -0.91
0;4 80 1;3152 1.2599 Cube root of 2 5/4 1;18 0.79
0;5 81 1;4027 1.3348 4/3 0;1E 0.11
0;6 82 1;4E79 1.4142 Square root of 2 7/5 1;55 1.01
0;7 83 1;5E91 1.4983 3/2 -0;1E -0.11
0;8 84 1;7070 1.5874 Cube root of 4 8/5 -1;18 -0.79
0;9 85 1;8222 1.6818 Fourth root of 8 5/3 1;37 0.90
0;X 86 1;946E 1.7818 7/4 2;69 1.78
0;E 87 1;X7X0 1.8877 13/8 0;E9 0.68
1;0 88 2;0000 2.0000 2/1 0 0

Table 14: Common Dublogs and Associated Ratios

A typical, and extremely useful, example of the utilities of Doubles and dublogs is in the
field of frequency, specifically the frequency of sound waves and music. Ever wondered why
an octave has twelve semitones? This is why.

If we take the twelfth root of 2 in dozenal (1;0869), and then take all of its powers up
to zen, we get some very interesting patterns, patterns which don’t exist when these same
figures are taken in any other base. Taking the logarithm of the resulting figures to base two
yields a simple progression of uncias. The entire series is listed in Table 14 on page 63.1E
Included in the table is a column giving the corresponding notes on a keyboard; note 78 is
the reference note, for reasons which will be become clear shortly.

As can be readily seen from the error columns in Table 14, these ratios are extremely
close to accuracy; indeed, they are considerably more accurate than the common rounding
of the decimal logarithm of 2 to 0.3.

To explain why these ratios are so amazing and so useful, a common example is needed.
The perfect such example is the normal piano keyboard, pictured in Figure X on page 64.
Choose an octave on the keyboard; say, the one beginning with Middle C. Press the first
note. The sound you hear is the vibration of the air at a given frequency. Now press the
next C up, the one that we say is one octave higher than Middle C. The sound that you now
hear is double the frequency of the first note you played.

Vibration frequencies have to be in a simple ratio to sound good. If you play two notes
together which are not in a simple ratio (e.g., 3 : 2 or 2 : 1), you have what is called a discord;

1EThis is confusing to those who are not mathematically inclined. To simplify matters, think of it this way:
10
√

2 = 21/10. We then take ( 10
√

2)2, ( 10
√

2)3, and so on. From there, we take the logarithm of the resulting
number to base two, which gives us a simple uncial fraction (0;1, 0;2, and so on).
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Figure X: The keyboard labelled in unciaDoubles.

it doesn’t sound right. But when you play two notes together which are in a simple ratio, you
have what is called a concord; it sounds nice, because the vibrations of the two frequencies
fall into step every few cycles and thus merge together. We have started with Middle C
here, but the starting sound is immaterial; no matter which note is selected, concords and
discords will result in the same way, according to where in the octave the two sounds fall.

We’d like, of course, if we could label and describe this perfectly arithmetically. However,
it’s simply not possible; doing so would require an infinite number of keys in each octave.
This is because it requires the successive powers of each ratio, but none of those ratios works
out to an exact multiple of two. Fortunately, however, the human ear is imperfect, and we
recognize sounds which are not quite in ratio as close enough, provided that they are, in
fact, within certain limits of the true ratio.

So we compromise: some number which multiplied repeatedly by itself yields answers
very close to the correct ratios and eventually reaches an exact two. Only one number does
that: the twelfth root of two.

So a full octave up is one Double of frequency; each individual note is one unciaDouble
of frequency. (Incidentally, this provides an excellent definition of a “semitone,” something
that has eluded musicians for centuries: a semitone is a unciaDouble of frequency.) No more
octaves, units of eight which have twelve keys; now there are unquades, units of unqua which
have unqua keys. Much more sensible.

Therefore, one can simply number the keys of a piano sequentially, with “Middle C”
falling on note 60. Note 50 is C one octave below Middle C, while note 70 is C one octave
above it. To find the frequency difference between two notes, take the absolute value of the
difference in their note numbers, use the ones place as the exponent of the twelfth root of
two expressed in dozenals (or look up the value of the ones place in Table 14 on page 63),
and then double that frequency the number of times expressed in the dozens place of the
difference. For example, to find the frequency difference between notes 45 and 75:
|45− 72| = 29. So: ( 10

√
2)9 = 1; 8222 (or, simply look up the value for 0;9 on the table).

Then, double twice, which means 1; 8222 · 2 · 2 = 6; 8887.
As mentioned earlier, note 78 is the reference note; this note is A[ or G] in the second
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octave up from Middle C. In the new nomenclature, of course, this is simply note 78. What
does it mean to be the reference note? That is the subject of the next section.

Exercises

1. What are the note numbers of the following? (Get units figure from diagram.) (a) B
below Middle C. (b) F] above Middle C. (c) E[ below Middle C. (d) E in the second
octave down from Middle C. (e) B[ in the third octave up from Middle C.

X.4 Frequency

As we’ve mentioned before, many of these applicatons of Doubles and dublogs are in the
field of frequency, which is a property of waves. Sound waves and light waves (though the
former are longitudinal and the latter transverse) are the waves we are most familiar with,
but there are many other types: X-rays, microwaves, and so on. Every wave has a frequency;
that is, how many times it goes through its full cycle in a given period of time.

We currently have many different ways of referring to such cycles. Often we use RPM,
or revolutions per minute; this is essentially a frequency measure, though it is used almost
exclusively for circular motion like turning wheels. But the canonical unit in SI metric for
frequency is the hertz (Hz), which equals a single cycle per second. Naturally, in TGM we
time our frequency to the Tim:

Freq (Fq) = 1 cycle per Tim (1 PerTim) = 5.76 Hz

Frequency is what we’ve been talking about all along, of course; but now we’ve got a unit
for it. This unit is frequently (no pun intended) necessary; to continue with our musical
examples, however, it’s vital for determination of pitch.

Frequency is a funny thing. As long as an instrument’s notes sound in these ratios
(approximated by the powers of the twelfth root of two), they will sound “in tune”; that
is, the songs they play will sound correct, presuming that the musician is sounding them
correctly. This is because it is the ratio that’s important, not the absolute frequencies
themselves. However, if two instruments are playing together, and each has its notes in ratio
but at different absolute frequencies, they will likely sound quite terrible, because their notes
are not in tune with one another. In other words, they are not tuned to the same pitch.

The international standard of pitch, designed to prevent this problem, is d/440 hertz
for the A above Middle C (note 69). That note vibrates at 64;48 Freq, not a convenient
number for a TGM standard. However, it’s important that instruments tuned in TGM
units be compatible with those not so tuned, so we would do well to closely approximate the
international standard. Fortunately, assuming that note 69 is 64;48 Freq, note 78 is 100;252X
Freq.

Tuning note 78 to 100 Freq exactly is only 0;252X Freq behind every Tim from the
international standard. Taking the reciprocal of that gives 4;E131, which tells us that the
two notes must be held for at least X Tim, give or take (twice the reciprocal) for the trained
ear to notice the “out-of-tuneness.” In other words, an instrument tuned with note 78 at 100
Freq is close enough; so, we have arrived at another auxiliary unit:

TGM Standard Pitch: Note 78 = 100 Freq
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This even correspondence means we can define absolute pitch simply by multiplying the
figures in Table 14 (on page 63) by 100 for the unquade following note 78, after subtracting
8. E.g., note 81 vibrates at 140;27 Freq (81 - 8 = 75). Other unquades can be treated
similarly; subtract 8, find the pitch for the ones column, multiply by 100, and then either
double once for every dozen above 7 or half once for every double below 7. For example,
note 56:

56− 8 = 4X. By Table 14, 0;X vibrates at 1;946E; multiply by 100 to get 194;6E
Freq. 56 is three Doubles down from 78 (one double to 68, one to 58, and 56 is
in the double from 48–58), so we halve that frequency thrice: 194; 6E/2/2/2 =
28; 0X46. So our answer is that note 56 vibrates at 28;0X46 Freq.

This discussion has focused on the piano because it contains many full unquades lined
up in a row; however, it is not limited to it. The violin, for example, has four strings, which
are tuned to notes 57, 62, 69, and 74. The flute has a compass (a range of playable notes)
which extends roughly from note 60 to note 90. And so on.

Mr. Pendlebury has also devised an entire system of musical notation based on these
revelations regarding the nature of sound, one much simpler than our current one, and
which does away with such craziness as sharps and flats entirely. It is beyond the scope
of this book; however, in No. 1 of The Dozenal Journal, his article Music à la Dozen
explains how all these complications, and many others, can be discarded as useless in favor
of a simple, coherent notation.20

Exercises

2. Find the absolute frequency in Freqs of: (a) Note 86, (b) Note 68, (c) Note 58, (d) Note
48, (e) Note 9X, (f) Note 49, (g) Note 56.

X.5 Paper Sizes

Paper sizes in TGM work by ratios, just as they do in the traditional and decimal metric
systems. In the latter, paper sizes are designed on the ratio of 1 :

√
2, widely regarded as a

particularly pleasing ratio (though it is a bit off from “the golden ratio,” φ). Folding a paper
in this ratio in half results in a new sheet with the same ratio.21

Metric paper sizes are divided into the A-series and the B-series. The A-series starts
with the A0, which is a sheet of paper with the proportions 1×

√
2 and which has an area of

one square meter. When it is folded in half, it becomes an A1, which has an area of half a
square meter but retains the proportions of 1×

√
2. When an A1 is folded in half, it becomes

an A2, with an area of a quarter of a square meter (half the A1) but still with those same
proportions. This continues on until at least AX, which is really too small to be particularly
useful.

The B-series, on the other hand, starts with the B0, which is a sheet of paper one meter
long, but which also has the proportions of 1 ×

√
2. When it is folded in half, it becomes

20See also Appendix C on page 92, for a place to obtain electronic copies of Music à la Dozen.
21This section is elaborated based not only on the second edition of the TGM booklet, but also on T.

Pendlebury, Paper Sizes, 24 The Duodecimal Review 3 (Duodecimal Society of Great Britain, 1182).
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the B1, which has a length of half a meter but which retains its proportions of 1×
√

2. The
also continues until at least BX, which, like the AX, is probably too small to be useful.

This leaves us with two series of paper sizes, one of which is designed to be a binary
division of a square meter in area (the A-series) and the other of which is intended to be
a binary division of a meter in length (the B-series). Unusually for metric, this actually
produces some fairly convenient sizes; in particular, the A4, which is a fair approximation
of American “letter” paper (8.5′′ × 11′′), has become fairly standard throughout the world.

Curiously enough, TGM produces nearly identical sizes of paper; however, the opposite
series correspond to one another. That is, in metric the A-series is based on area, while the
B-series is based on length; the TGM length-based series corresponds quite closely to the
metric area-based series, while the TGM area-based series corresponds quite closely to the
metric length-based series. These correspondences are indeed quite close; so close, indeed,
that trimming metric papers to equal TGM sizes is a waste of time. The differences are so
small that they can safely be classified as manufacturing error.

The basic TGM length-based series is prefixed “Gf” (pronounced, as by now we all know,
“Grafut”); it is followed by a plus or minus sign, depending on whether we are doubling or
halving the size (think of “+” sizes as unfolding and “−” sizes as folding), and then a number
to indicate how many times we do either. The basic TGM area-based series is prefixed “Sf”
(after, of course, the Surf), and then suffixed in the same way as the length-based series.
These are called the Grafut series and the Surf series, and are pronounced (for example) as
“Grafut plus one.”

Table 15 shows the TGM sizes in Grafut, in millimeters, and then compares them to the
exact metric sizes in millimeters and square meters. As noted before, these are not exactly
equivalent; however, they are so very close as make no real difference. Buying metric A4
paper is the functional equivalent of buying Gf−1 paper; and, in fact, the longer side of an
A4 sheet is less than a millimeter and a half away from being a perfect Grafut ruler.

The astute observer will note that the proportions of these papers are not exactly 1 :
√

2.
However, this is a virtue, not a fault; TGM significantly improves on the metric paper sizes
precisely because of this fact.

The square root of two (1;4E79. . . ) is a nonterminating fraction in all bases, by nature;
sticking rigidly to it yields extremely clumsy linear dimensions. However, if we round it off
to 1;5, we’re so close that at normal paper sizes the difference is imperceptible, and it yields
much more convenient dimensions. So the TGM paper sizes are this ratio, 1 : 1; 5, so close
to 1 :

√
2 as to make no real difference, yet a much more manageable number. This takes

care of the Grafut series.
For the Surf series, we must find two numbers in the ratio of 1 :

√
2 which, when multiplied

together, come to 1 unit of area. These two numbers are 0;X112 and 1;233. If we slightly
alter the second number to 1;234 (which divides by two quite neatly, with no remainder,
three times), and then divide it by 1;5 (our approximation of

√
2), we get very slightly less

than 0;X1 (0;X0E3 precisely) instead. Make those Grafut, and then multiply the two to get
a sheet of area equal to 1 Surf. (Strictly speaking, 1; 234× 0; X1 = 0; EEE74, but that’s close
enough.) Starting from there (a Sf+0 of 1;234 Gf×0;X1 Gf sheet, with an area of 1 Sf), we
come up with a set of paper sizes of easy dimensions which still closely matches the metric
B-series.

And so, ironically, metric paper sizes, designed to enshrine the meter and the number X



68 Chapter X. Reckoning by Ratios

Grafut Series (Length-based)
TGM Sizes Decimal Metric Sizes

TGM Grafut Millimeters Metric Millimeters Grafut Meter2

Gf+3 2;X×4;0 837×1183 A0 841×1189 2;X17×4;0308 1.0
Gf+2 2;0×2;X 592×837 A1 594×841 2;016×2;X17 0.5
Gf+1 1;5×2;0 419×592 A2 420×594 1;509×2;016 0.25
Gf+0 1;0×1;5 296×419 A3 297×420 1;009×1;509 0.125
Gf−1 0;86×1;0 209×296 A4 210×297 0;864×1;009 0.0625
Gf−2 0;6×0;86 148×209 A5 148×210 0;604×0;864 0.03125
Gf−3 0;43×0;6 105×148 A6 105×148 0;432×0;604 0.01562
Gf−4 0;3×0;43 74×105 A7 74×105 0;302×0;432 0.00781
Gf−5 0;216×0;3 52×74 A8 52×74 0;217×0;302 0.003906
Gf−6 0;16×0;216 37×52 A9 37×52 0;217×0;302 0.001953
Gf−7 0;109×0;16 26×37 AX 26×37 0;217×0;302 0.000976

Surf Series (Area-based)
TGM Sizes Decimal Metric Sizes

TGM Grafut Surf Millimeters Metric Millimeters Grafut
Sf+4 3;44×4;914 14 994×1405 B0 1000×1414 3;470×4;948
Sf+3 2;468×3;44 8 703×994 B1 707×1000 2;484×3;470
Sf+2 1;82×2;468 4 497×703 B2 500×707 1;836×2;484
Sf+1 1;234×1;82 2 352×497 B3 353×500 1;242×1;836
Sf+0 0;X1×1;234 1 249×352 B4 250×353 0;X19×1;242
Sf−1 0;718×0;X1 0;6 176×249 B5 176×250 0;721×0;X19
Sf−2 0;506×0;718 0;3 125×176 B6 125×176 0;50X×0;721
Sf−3 0;36X×0;506 0;16 88×125 B7 88×125 0;370×0;50X
Sf−4 0;263×0;36X 0;09 62×88 B8 62×88 0;265×0;370
Sf−5 0;195×0;263 0;046 44×62 B9 44×62 0;195×0;262
Sf−6 0;1316×0;195 0;023 31×44 BX 31×44 0;1312×0;195

Table 15: TGM Paper Sizes
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forever, wind up fitting perfectly into the dozenal TGM system.

Examples

1. The format of a booklet is four dozen pages, six by eight and a half unciaGrafut
(d/148×210 mm). Four pages were printed on each face of a sheet.
(a) What is the sheet size in Gf (mm)? (2 × 0;6) by (2 × 0;86) (Gf); or (2 × d/148)

by (2 × 210) (mm).
(b) What is its code? A3 = 1 Gf by 1;5 Gf = d/297 mm by 420 mm.
(c) How many sheets required? 2 faces × 4 pages = 8 per sheet. So number of hseets

= 40 / 8 = 6 per booklet.
(d) The paper substance is 6 4Mz/Sf (d/85 g/m2). What is the weight of one gross

(d/150) booklets? Total area = (6 × 1;5)Sf × 100 = 860 Sf. Weight: 860 × 6 4Mz
= 4;3 unciaMaz. (6 × 0.125)m2 × 150 = 112.5 m2. Weight: 112.5 |times 0.085
kg = 9.5625 kg.

Exercises

3. An A4 sheet is folded in three to go in a long envelope 4;5×8;X unciaGrafut (d/109×218
mm). (a) What are the dimensions of the folded sheet in 1Gf (mm)? (b) What is its
area in 2Sf (cm2)?

4. Another A4 sheet is folded in four to go in an envelope 6;7×4;8 unciaGrafut (d/162×114
mm). (a) Folded dimensiopns in 1Gf (mm)? (b) Area in 2Sf (cm2)?

X.6 The Complex Double: The Euler Number

Population growth is an interesting application of ratios. Over a certain period of time,
a population of living things will increase its numbers by a certain amount; over the next
period of time, it will do the same. But the second time, it will increase its numbers by a
certain ratio of its increased population, including the increase from the first period of time.
So it’s not a linear scale.

The mathematicians say that populations grow proportionally to their size at each passing
moment; they grow on a logarithmic scale. Specifically, they grow logarithmically to a certain
base. That base is represented by the symbol e, or Euler’s number (named after Leonhard
Euler, the Swiss mathematician who figured it out). Logarithms to this base are called
natural logarithms, and they are represented mathematically not by the normal “log,” but
by “ln”. They could be written less succinctly as such: loge.

Euler’s number’s value is 2;8752 3606 9821 9E8. . . . It continues infinitely, but this number
is reasonably accurate for practical applications, and can more conveniently by abbreviated
as 2;875 (as in decimal it is abbreviated as 2.718). The number appears in many places;
for our purposes, it is enough to note that it exists, and to know that it has extensive
applications when figuring in ratios.

X.7 Dub: Dealing with Exponential Increase

Any unit in TGM can be prefixed with “Dub” (abbreviated “D”) to facilitate dealing with
ratios. “Dub” means “Doubles of.” For example, rather than referring to “octaves,” we
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can refer to DubFreq (DFq); 3 DFq is an increase of 3 octaves. Power is sometimes also
measured with logarithmic units; TGM can accomodate this, as well. 3 DubPov (DPv) is
three doublings of power. So if we start with 8 Pov and we see an increase of 3 DPv, we
have 8 · 2 · 2 · 2 = 54 Pv at the end.

Chapter E: Looking at Light
Fundamental Reality: The Light-Giving Sun

We’ve already talked about electromagnetic radiation, and we’ve already talked
about frequency; this is really all we need to know about electromagnetic radiation
per se, and light is just one small segment of the vast range of electromagnetic

frequencies (specifically, that segment with wavelengths from between 4000 9Gf (d/3960 Å)
and 7800 9Gf (d/7591 Å)).

However, light is by far the most evident part of the electromagnetic spectrum to us,
the only part that is visible, and we experience the world largely through it, so it is to be
expected that there are a number of units and concepts unique to it.

E.1 Light as Light

Not all light is created equal. Different wavelengths of light within the visible spectrum
give rise to different colors of light; lower wavelengths are red, higher are violet. But the
main concepts to be aware of are luminous flux (also called light power), light density, and
luminous intensity.

Luminous flux is the measure of the amount of visible light emitted by a source; in
SI metric, this is measured in lumens (lm), which is one candela per steradian. In TGM,
luminous flux is the primary unit; it is measured in Lypov (Lp), and maintains the 1 : 1
correspondence of TGM units:

Lypov (Lp) = 1 5Pv at 5730 9Gf = 1.179597 lm

This wavelength was chosen because of its visibility factor, which is higher than other wave-
lengths. Light at this wavelength is yellow-green, and is easier to see than other wavelengths.
For this yellow-green wavelength, the visibility factor is thus 1 Lypov per pentciaPov. Lower
wavelengths, like orange and medium green, are 0;9; deeper red and greens can range from
0;6 to 0;2, while higher-frequency light like blues and violets are 0;1 and 0;2.

Light density is luminous flux per unit area; in TGM, this is measured in Lypov per Surf,
or Lyde:

Lyde (Ld) = 13.4921485 lum/m2 = 1.2534616 lum/ft2

Finally, luminous intensity, or light intensity, is the intensity of light of a given frequency
from a power source of a given strength; in SI metric it is measured in candelas (cd), which
is the luminous intensity of light at 540×1012 Hz and a radiant intensity (power, roughly)
of 1

683.0 watts per steradian. As light radiates away from its source, its density decreases
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in proportion to the square of the distance; therefore, by multiplying light density (Lyde)
by the square of the distance, one can find the luminous intensity of the source, which is
measured in QuaraLydes (QLd):

QuaraLyde (QLd) = 1 Lypov/steradian = 1.179597 cd

All these are properties of light as light; however, we must also consider light as we see it.

E.2 Vision and Photography

A camera is more or less a mechanical eye, and film is just a permanently-impressible retina;
therefore, most of what we discuss in this section will be applicable to both fields. The
younger among us will be unfamiliar with film itself; however, even digital cameras operate
on the same principles, merely replacing chemistry with electronics, so the concepts should
be familiar to all.

To take a picture with a camera, or to see anything, light has to strike upon the film
or the retina after entering the camera or eye through the aperture or pupil. In a camera,
the light causes a chemical reaction on the film (or an electrical one on sensors); in an eye,
the light induces chemical reactions which send signals to the brain. Bright light will cause
the pupil to get smaller; in a camera, unless one contracts the aperture, the photograph will
be washed out; that is, too much light will be present to form a clear image. Adjusting the
aperture or pupil in this case ensures that the exposure—the amount of light permitted to
strike the operative surface—is appropriate to the sensitivity of that surface.

How do we know the appropriate size for the aperture? The question seems the height of
stupidity; we know the appropriate size for the aperture of a camera by adjusting it until the
picture looks right, and we don’t need to know the appropriate size for our pupils because
our brains take care of that without us knowing. All true; however, there is a mathematical
principle which our brains follow, and which we unconsciously follow ourselves when we
adjust our cameras, when we’re adjusting our various apertures. That principle is that the
aperture’s value is proportional to the focal length of the lens. In photography, this is called
the f-stop.

F-stop is listed in simple ratios, such as “f/16” and “f/2.” This means simply that the
diameter of the aperture is the focal length of the lens divided by the denominator (the
bottom part of the fraction). Twice the diameter of the aperture covers four times as much
area and admits four times as much light. These are, the astute reader will have already
noticed, Doubles; each f-stop is the square root of two times the next stop.

For the eye, the focal length of the lens is a little less than 1 1Gf (a unciaGrafut, about
the diameter of an average eyeball), while the aperture diameter runs from around 3 2Gf
(three biciaGrafut) to 1 2Gf (one biciaGrafut). This works out to an f-stop of from f/4 to
f/E. The amount of exposure that comes through the pupil is the luminous flux multiplied
by the time that the light is allowed in; true to form, TGM provides a specific unit for this:

Lyqua (Lq) = 1 LpTm = 0.2047911 lm·s

This measures the amount of light that is allowed into the aperture. It’s important to ensure
that this amount conforms to the receptive medium (film, retina, sensors, or whatever); in
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other words, each medium has a correct exposure. The higher the correct exposure is, the
lower the sensitivity of the medium is. TGM provides a specific unit for sensitivity, as well.

Senz (Sz) = 1/LdTm = Sf/Lq = 0.426915 m2/lum·s

In older systems, sensitivity was customarily measured with a logarithmic unit, while TGM
here provides a simpler arithmetic unit. As discussed above,22 however, a logarithmic unit
can easily be constructed for Senz with the Double prefix: the DubSenz (DSz). 0 DSz is
equal to ASA 16, 13 DIN, 24 Sch◦, and 23 BS◦.

Exercises

1. Write down the dublogs of: (a) f/8, (b) f/14, (c) f/E, (d) f/1X, (e) f/5;7, (f) 28 Ld,
(g) X8 Ld, (h) 0;6 Tm (1/X s), (i) 0.09 Tm (1/d/100 s).

2. A lamp has an intensity of X0 QuaraLyde (d/140 candela). What is the illumination in
Lydes (lum/m2) at 6 Gf (2 m)?

E.3 Stars and the Sun

Of course, our sun is a star, unremarkable except that it is our own; but it’s significant
enough to us that it deserves a special mention.

The brightness of stars have traditionally been measured as apparent magnitudes. This
is a fundamentally subjective system and works something like as follows, having been de-
rived from the ancient Greek system of classifying stars into six categories based on their
brightness. The dimmest stars visible to the average, unaided human eye are of magnitude
6. These increase logarithmically; that is, by Doubles, with magitude 5 being twice as bright
as magnitude 6, magnitude 4 being twice the magnitude of magnitude 5, and so on. The
system is more scientific now; the star Vega is the standard star, measured at magnitude
0; the brightest star in the sky, Sirius, is magnitude -1.4. There are now more than six
magnitudes. Most importantly, they are not Doubles anymore; each level of magnitude is
a multiplication by 2.512. This number is the fifth root of a hundred ( 5

√
100.0), and was

chosen to ensure that subtracting 5 magnitudes would mean an increase in brightness of one
hundred times.23

These magnitudes are called apparent because they don’t really reflect the actual bright-
ness of the stars; they only reflect how bright the stars look to us on Earth. This appearance
is affected by distance, light color, intermediate objects, and of course the actual magnitude
of the star, which is how much light the star actually emits. This is measured by pretending
that all the stars are some uniform distance away—typically ten parsecs, which is 5;7898 14Gf
(unquadquaGrafut)—and determining what magnitudes they would have were they actually
there.

But this is TGM. Such slavish worship of the ten-god and silly messing about with
parsecs and fives is totally unnecessary here. Brightness can easily be measured on a normal
logarithmic scale, specifically a scale of Doubles. Each DubBrite (DBt) is twice the brightness
of the last. 0 DBt is the dimmest star visible to the naked eye. If the DubBrite number

22See supra, Section X.7, at 69.
23In this scale, the full moon has a magnitude of -12.74, the sun -26.74.
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is negative, it means that the star is not visible to the naked eye, but rather requires the
assistance of binoculars, a telescope, or some similar aid. And so goes the scale of apparent
magnitude.

Assuming that 0 DBt is equal to the old system’s magnitude 6 (which in theory it ought
to be, as both represent the threshhold of visibility), Sol’s magnitude would be E;676 DBt.
Our sun, Sol, is such an important part of everything on our planet that it makes sense to
give it prominence with regard to absolute magnitude. If apparent magnitude is brightness,
then we can call absolute magnitude brilliance, and say that the brightness of our sun at the
distance of one lightyear is 10 DubBril (DBl).

Both of these are logarithmic units. So E DBl is half the sun’s brilliance, and 11 DBl
is twice it. 0 DBt is 6.24 traditional magnitude, only barely visible to the naked eye. At
the distance of 1 Astru (the average distance of the earth to the sun (about 8;207X XGf
(decquaGrafut)), the sun’s brightness is 37;E DBt.

And now we have come full circle. We began our discussion of the TGM system with
a conversation about time, and how our perception of time depends upon the cycles of the
sun. We now end it defining units to describe the brightness and brilliance of the sun. And
so the last reality of TGM is truly its first, and the great harmony of creation can be clearly
seen.

Exercises

3. Find the dublog of the fifth root of a hundred (nearest unciaDouble).
To convert Mags to dubBrites subtract 6.24, dozenize, and multiply by the dublog you
found in 3. Change the sign + to - or vice versa.

4. (a) Sirius is mag. -1.46. What is its brightness in dubBrites?
(b) How many times brighter is the Sun? (Sun = 37;E DBt). (Abg of DBt difference)
(c) Sirius is 9 lightyears away. What is its brilliance in DBls? (DBt + 2Dlg Lys).
(d) How many times more brilliant than the Sun is it in reality? (Sun = 10 DBl).
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Chapter 10: Using Dozenals

The biggest difficulty in using TGM isn’t really the TGM system itself, which
is quite simple and logical compared to both SI and the imperial and customary
systems. The biggest difficulty is the dozenal system itself. Not that the dozenal

system is more difficult than decimal; quite the contrary, it is considerably easier. But
it’s not what most people are used to, and so the biggest hurdle in using TGM is getting
accustomed to the superior dozenal system.

10.1 Thinking in Dozenals

It’s helpful to simply watch numbers throughout our daily lives and try to apply dozenals
to them; this is the biggest and simplest way to get accustomed to this superior system.
When measuring out wood for a construction project—say, a son’s Boy Scout birdhouse, or
a compost bin for the backyard—using feet and inches, write them in dozenals rather than
decimals and see the simplicity emerge. For example, to find the floor area of a birdhouse
which will have walls six inches wide and eight inches long, don’t write the equations as
follows:

6′′ × 8′′ = 48′′

How many square feet and inches is d/48 square inches? Write them out instead as dozenal
fractions:

0; 6× 0; 8 = 0; 4
0;4 square feet; it’s as simple as that.

It’s also instructive to try reckoning months and years in dozenals, as they are naturally
applicable to that even to us accustomed to thinking in decimals. For children under two
years old, we commonly refer to ages in months; so when you remark on the age of such a
child, or when someone remarks on it to you, practice thinking dozenals by rephrasing such
ages.

“He’s eighteen months old.” Well, we’re really saying that he’s a year and a half old,
aren’t we? So he’s 1;6 years old, or 16 months old. Easy. “He’s twenty months old.” Well,
not as simple there, but still quite straightforward. He’s 1;8 years old, or 18 months old.
Those of us who work in criminal justice will frequently hear long sentences expressed in
months; e.g., a murderer might be sentenced to “three hundred and sixty months.” Well, let’s
dozenize first; d/360 is equal to 260. How many years is that? Once we have the number of
months in dozenal, the number of years is a simple matter of moving the uncial point. 260
months is 26 years.

This sort of practice can continue ad infinitum. Think of ages in unquenniums, not in
decades; if you’re just entering your fifth decade, you may be beginning to feel old, but you
can take heart that you’re only a third of the way through your fourth unquennium. If you’re
entering your fourth decade, then you’re still just a baby, only halfway through your third
unquennium. Think of the years in terms of unquenniums (unquaYears) and biquenniums
(biquaYears), rather than decades and centuries. The Soviet Union didn’t collapse at the
end of the 1980s; it collapsed at the end of the 1190s (1199, to be more precise). The wild
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and crazy decade wasn’t the ’60s; it was the ’70s (1170s), and into the 80s, too. And the
era of nationalistic colonial empires wasn’t the nineteenth century; it was the triqua-aughts
(1000–1100, or 1728–1872, though really it continued to 113X, or even 1161; these arbitrary
time periods aren’t any more descriptive of real history in dozenal than in decimal).

Think dozenal, don’t just say it; it does little good to be forever converting dozenals to
decimals in your head in order to “understand” them. One must get used to thinking of
numbers in a different language, a task that really takes surprisingly little time.

Most helpful will probably be simply doing a lot of math problems, particularly the
multiplication tables. These have been drilled so thoroughly into our heads in decimal form
that banishing them, or at least making them sit aside for a moment, in favor of dozenal
equivalents can take some practice. So just do some problems, for four or five minutes a
day; the regularities of the dozenal multiplication tables are such that within a week or two
they’ll be coming to you just as easily as decimal ones do today.

There are utilities to help with this. One excellent utility, producing random single-digit
multiplication problems throughout the table (excluding the ones and zens tables, since they
are so easy as to require no practice) can be found on the Internet:

http://www.dozprog.webs.com/dozmult/dozmult.html

As said, four or five minutes a day for a week or two should be enough to get one thinking
in dozenals with some facility.

There are, of course, other ways to help accustom one to this superior number system;
the Dozenal Society of America24 and the Dozenal Society of Great Britain25 have many
such resources available.

10.2 Calculating in Dozenals

Beyond simple mental calculations, however, there are also many tools available to help us
work with dozenals, just as there are tools for helping us deal with decimals. These range
from the simple abacus to the powerful and complex computerized calculator. The most
simple of such tasks is converting numbers from decimal to dozenal vice versa.

Of course, all of these conversions can be done fairly easily, if labor-intensively, by hand.26

But failing that, there are a number of software converters available for doing this task easily
and accurately, and many of them work without any download necessary. The most com-
plete of these is probably Alen Peacock’s, which bills itself as “The World’s First Online
Dozenal/Decimal Converter Calculator.”27 Although the converter uses the unusual char-
acters * and # for X and E, it is otherwise extremely simple. Simply enter the dozenal or
decimal number one wants to convert into the appropriate field on the page, and the con-
verted number will appear in the other field as you type. Unfortunately, though it does work
with fractional numbers, it does not work with exponential notation (so-called “scientific
notation,” such as 1.492×103).

The dozenal suite of programs28 offers a downloadable, command-line solution. Among
24http://www.dozenal.org
25http://www.dozenalsociety.org.uk/
26See, e.g., Gene Zirkel et al., Decimal-Dozenal Conversion Rules (Dozenal Society of America, 11E1),

available at http://www.dozenal.org/articles/articles.html.
27http://flud.org/dozenal-calc.html
28http://dozenal.sourceforge.net

http://www.dozprog.webs.com/dozmult/dozmult.html
http://www.dozenal.org
http://www.dozenalsociety.org.uk/
http://www.dozenal.org/articles/articles.html
http://flud.org/dozenal-calc.html
http://dozenal.sourceforge.net
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other things, it offers two programs, dec and doz, which convert dozenal to decimal and dec-
imal to dozenal respectively. Both programs accept scientific notation in the form common
on digital calculators; e.g., 1.492e3, and are accurate to approximately 13 fractional places
(this is by far the most common number; the actual number is dependent upon individual
computer hardware). They will also output results in exponential notation if requested by a
special “flag,” in this case -e. Both programs also allow specification of precision by another
special flag, -k, followed by the number of places of precision that are desired. The default
is four places; but if the result is a whole number, no places will be displayed. Precision
numbers are specified in dozenal, of course, for doz, which converts decimal numbers to
dozenal; and decimal for dec, which converts dozenal numbers to decimal.

Despite being apparently complex in description, the programs are quite easy to use. To
convert d/1492 to dozenal, for example, simply type the following:

doz 1492

The answer, X44, will appear on the screen. If you want to add a fraction, then simply add
one:

doz 1492.333333333333333333

And the answer, X44;4000, will also appear. (You may also get the answer X44;3EEE; this
is an unavoidable artifact of computer floating-point calculations. One will note that these
numbers are virtually the same.) If you want the answer in exponential notation, provide
the program the -e flag:

doz -e 1492.33333333333333333

And you’ll get the answer: X;443Ee2. But due to the default precision value (4), it’s no longer
clear that this is really X44;4, so you ask doz to give you a few more digits of precision:

doz -e -k 8 1492.3333333333333333

And the answer, X;443EEEEEe2 is quickly produced. You’re clearly dealing with X44;4 now.
dec works in much the same way, the only difference being that precision values are

entered in decimal, not dozenal, notation. (In other words, entering “T” for precision will
work in doz, meaning “X,” but not in dec, which only knows decimal.)

Both programs, when reading dozenal numbers, understand a variety of common nota-
tions for X and E. For X, they understand “X,” “x,” “T,” “t,” “A,” and “a”; for E, they under-
stand “E,” “B,” and “b.” These may be mixed in any way desired; entering dec xXtTaAbBE
will correctiong produce the decimal value of X XXXX XEEE (4 690 709 567). When outputting,
they produce only “X” for X and “E” for E, following the use of F. Emerson Andrews in his
initial dozenal masterpiece, An Excursion in Numbers.29

All this about converting numbers from base to base is all well and good; but what about
more complex calculations?

Abaci are always available, and for four-function calculations are arguably faster than
digital calculators; these can easily be adjusted to work with dozenals rather than decimals,

29F. Emerson Andrews, An Excursion in Numbers, available at http://www.dozenal.org/articles/
articles.html.

http://www.dozenal.org/articles/articles.html
http://www.dozenal.org/articles/articles.html
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Figure E: ZCalculator.exe, running in Windows 7.

often without any changes to the device itself.2X But for those of a more modern bent, there
are other excellent tools available.

Written specifically for Windows, but also runnable in GNU/Linux and other systems
capable of running wine,2E is ZCalculator.exe by Michael Punter. ZCalc, as this author has
come to call it for short, is a fine little program which produces a visual calculator on the
desktop. It can operate equally well in decimal and dozenal modes; switch between them by
hitting the the “Zen” button (which will turn to “Dec” for switching back). The calculator
has trigonometric functions, logarithms, and the reciprocals of each, and operates in the infix
notation we’re all familiar with. It can work with exponential notation (the “Exp” key), has
a couple of key constants available (π and e), and has some rudimentary memory functions.
It uses “A” for ten and “B” for elv, a common shortcut in digital environments when real
dozenal characters (like X and E) aren’t available. ZCalc also uses the Humphrey point (“;”)
for uncials, and it has options for angle measurements in a single 12-segment circle (“1c”),
unciaPis (“TGM,” as shown in Figure E), in d/360 degrees, and in 260 degrees, giving a great
deal of flexibility. It can also function as a simple converter; entering the number to convert
and then striking the “Zen” (or “Dec”) button will convert the number from one base to the
other.

The dozenal suite of computer programs30 also includes a complete postfix-notation (“Re-
verse Polish Notation,” or RPN) calculator, which also works at the command line, called
dozdc. While it can work in one-command units on the command line, the easiest way to
experiment is to enter the program interactively by simply typing dozdc. Explaining RPN is
beyond the scope of this little work, though it’s an easy concept to understand and provides
an unambiguous notation for mathematical expressions (unlike our normal infix notation,
which requires lots of parentheses and rules concerning priority to ensure that operations

2XSee, e.g., Robert Edelen, A Duodecimal Abacus in 2X The Duodecimal Bulletin E (1175), available
at http://www.dozenal.org/archive/dbpict02.html.

2Ehttp://www.winehq.org/
30http://dozenal.sourceforge.net

http://www.dozenal.org/archive/dbpict02.html
http://www.winehq.org/
http://dozenal.sourceforge.net
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are done in the correct order). It used to be quite common not long ago on calculators pro-
duced by HP and Sinclair. Without explaining the concept of RPN, however, an example of
dozdc’s operation is as follows:

8 1 3 / ^ 2 * =

This takes the cube root of eight (8 1 3 / ^, meaning “take eight; divide one by three; and
then raise eight to the power of the result”), and then multiplies it by two (2 *), yielding 4.

dozdc will work with equations of arbitrary length, accepts all the same characters for
X and E that doz and dec do, and even allows for some simple programming and variable
handling.

Now that we have the tools we need to get used to working with dozenals, what can we
do to get used to working in TGM itself?

Chapter 11: Using TGM

Getting used to using TGM is best done by simply using TGM. This sounds like a
platitude, but it really needs to be stated. Too often enthusiasts of a new measuring
system are content to simply study and pronounce its virtues without ever actually

making use of the qualities they praise so highly. Some ways of using TGM are actually
quite simple and can be done daily; let’s consider some as good examples.

11.1 Thinking in TGM

Consider heights as an example. In America, at least, heights are routinely given in feet
and inches, such that even without saying the units it’s perfectly clear what is being meant.
“She’s five-two,” or “he’s six-one,” are common phrases devoid of ambiguity. Feet and inches
are so conveniently sized and easy for this type of length measurement that it’s unsurprising
that they persist quite tenaciously, even in many countries which have metricated. But the
Grafut is only a little less than a foot; why not start thinking about heights and similar
lenths in Grafut, instead?

Your author, for example, is almost exactly six feet tall. (About an eighth of an inch less,
but close enough.) Rather than thinking of myself as six feet tall, however, I can think of
myself as 6;2 Grafut tall. It’s just as easy to say, too; “I’m six dit two.” “She’s five dit eight.”
Because feet are already in dozenal, one can simply transform the inches part into dozenal
and convert this number from feet and inches to Grafut, using any number of convenient
tools31 or simply by hand or head (add one unciaGrafut per two and a half feet; this will
give approximately the right figure, if you’re working with short distances like heights). For
example, if someone is “five foot ten,” a longish way of saying that he’s five feet, ten inches
tall, simply convert that into the dozenal number 5;X and convert it. The one-unciaGrafut
rule given above yields about six Grafut; the exact figure is 6;01X9 and some change, which
is certainly close enough for government work, a difference of less than two biciaGrafut (for

31See infra, Section 11.3, at 7E.
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comparison, of slightly less than two millimeters). A person this height would undoubtedly
refer to himself as “six Grafut even,” or “six Grafut tall.”

We’ve already seen that in the printing and publishing field, converting to TGM will be
a non-issue. The current standard printer’s point, which is quite similar to the Postscript
“big point,” is almost identical to two triciaGrafut; so setting the TGM point equal to two
triciaGrafut and the TGM pica (twelve points) to two biciaGrafut will result in almost no
change in actual practice.32

Turn to the kitchen for further examples. We often measure our kitchen ingredients in
volume rather than mass; almost always, in fact. The standard TGM volume unit, the Volm,
while a quite convenient size for shipping and the like, is too large for ordinary kitchen use.
(It is about six and three quarters American gallons.) However, the Volm offers subsidiary
and supplemental units which are quite convenient for daily home use.

When you’re cooking, translate your recipes into TGM. When the recipe calls for a
teaspoon (approximately 5 milliliters) of something, consider it 4 quadciaVolm. Better yet,
consider it a third of a triciaVolm, and that will remind you that a tablespoon is about equal
to a triciaVolm. A cup is nearly one and a third biciaVolm, but don’t think of it that way;
think of it as nearly half a Tumblol, which is a big pint for Americans and a slightly small
pint for the British. Two Tumblols are a Quartol; four Quartols are a Galvol; these are all
quite close to our quarts and gallons, and will be just as convenient for the kitchen.

11.2 Tools for TGM

To use TGM, of course, one needs tools. These necessary tools can be divided into two main
groups: one, the physical measuring tools necessary for measuring physical objects; and two,
tools to facilitate conversion of TGM units into units of the older systems.

Regarding the first, oftentimes these can be jerry-rigged from existing equipment, some-
times without any actual change to equipment beyond relabelling. In the kitchen, for ex-
ample, simply relabel one’s teaspoon as 4 4Vm, and one’s tablespoon as 1 3Vm. Relabel
one’s cup as 14 2Vm, and relabel the quarter-cups on the side as 4 2Vm. There are sixteen
tablespoons in a cup, of course, and there are onezen-four (14) 3Vm in 14 2Vm. This may
seem opaque at first, but once one is accustomed to thinking in twelves rather than tens, it’s
truly just as transparent as cents in a dollar.

The Grafut is likewise easy; being so close to the foot, one can adjust to its use with
little trouble. Rulers scaled in inches and centimeters are readily available; simply mark
with a black marker off at 29.5 centimeters, or (if your ruler doesn’t have centimeters) at
11.64 inches; then use another ruler to mark off the unciaGrafut at 0.97 inches each, and you
have a Grafut-scaled ruler. Alternatively, one can simply download a paper with a perfectly
Grafut-sized ruler on it.33 This may require some modification based on the printer being
used; but once done, one can simply wrap an existing ruler in this paper, cover it with tape,
and use it as appropriate. It’s not pretty, but it’s functional, and will serve well until TGM
is popular enough to inspire ruler manufacturers to produce them for us.

32See supra, at 1X.
33Inquire about this in the “TGM Ruler” thread at the DozensOnline forum, http://z13.invisionfree.

com/DozensOnline/index.php.

http://z13.invisionfree.com/DozensOnline/index.php
http://z13.invisionfree.com/DozensOnline/index.php
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The next trip you plan, plan in quadquaGrafut, triquaGrafut, or Gravmiles, not miles.
The mile is a remarkably convenient unit, but the quadquaGrafut, for example, given its
relationship to the other TGM units, is even more so. Equal to about 33/4 miles, or a bit
under 61/6 kilometers, the quadquaGrafut (doubtlessly it will come to be called simply the
"quadqua" when referring to long distances) is a very convenient size for discussing long
distances. Not only is this about the distance that a healthy, unloaded person can walk
in an hour, but it also provides us with much lower numbers than miles do, when we’re
typically dealing with large numbers of them. San Francisco to New York City, for example,
is d/2,909 miles roadwise (less, of course, as the crow flies); but it is only 537;6 quadquaGrafut.
Perhaps even more demonstrative, New York City to Miami is d/1,290 miles, but only 242;7
quadquaGrafut.

Using them is easy; as a rough estimate, simply divide the number of miles by four. For
more accurate but still rough and mental division, divide the number of miles by 3;9, or
13/4. This is at least as easy as the multiplication by 5/8 urged upon us to convert miles to
kilometers.

Weights are more difficult, as finding scales calibrated in TGM units is, at this point,
impossible, and there is no easy way to modify most existing scales to read out Maz. (We
may as well work in mass rather than weight, as amount of matter, rather than gravitational
pull thereon, is what we’re really talking about, and the 1 : 1 correspondence between the
two at a standard Gee is one of TGM’s many strengths.) If one has an analog scale (the
kind without a digital readout; that is, with a wheel inside it with the scale in pounds or
kilograms printed on it), one can simply remove the scale and recalibrate it with a marker
or pen: one Maz is just under 49 pounds, and little bit more under 22 kilograms, while a
unciaMaz is about 4 pounds and unqua ounces (just a hair under 42/3 pounds), and just a
little heavier hair under 21/6 kilograms. Most likely, it would be easiest to subdivide these
by twos—halves and quarters—then to divide them into full uncias, since we’re probably
getting to very small distances on the wheel here. However, since halves and quarters would
be even biciaMaz, this is not a problem. A biciaMaz is just under 61/3 ounces, or 0;48EX
pounds (0;21X2 kilograms, or just under d/180 grams); finer gradations than this on a common
household scale are likely unnecessary. Or, of course, one can scale in Poundoids or Kilgs,
which should proceed in the same way.

These analog scales are few and far between in our digital age, however, and the author
has not yet concluded on a satisfactory substitute for it. For the time being, then, we may
be required to weigh in pounds or kilograms and convert to Maz.

Still, analog kitchen scales, scaled in grams, are still often available, and doing something
like what is outlined above, in the appropriately smaller subdivisions, is still quite within
reach.

If you work customarily with much larger quantities, the septquaMaz is a fair approxi-
mation of the metric megaton; the metric ton is about a quarter of a biquaMaz (0;3282). For
imperial (“long”) tons, a biquaMaz is very slightly less than 32/3 (3;7E90); for the American
(“short”) ton, use 41/10 (4;130E).

11.3 Calculating TGM

Because TGM is a relatively new and unknown system, there is a shortage of tools available
for its use. However, there are two excellent utilities which provide for easy and very accurate



80 Chapter 11. Using TGM

(to within 8–X uncial or decimal places at least) conversions for these units, to metric or
imperial/customary units, or even to other lesser-known systems.

One of these is web-based only, written by Takashi Suga, titled simply “A Converter.”
Its interface is complex, and consequently powerful; the only feature missing is the ability
to select a level of precision (precision is instead calculated automatically from the number
of digits input; but there are no options for selecting methods of rounding to that number,
either). It is available at:

http://hosi.org/cgi-bin/conv.cgi

The converter works effectively with units from the imperial/customary systems; SI metric;
TGM; and Suga’s own system. It accepts input in either decimal or dozenal, with options
to specify which is intended.

Another web-based system, based on another system we’ll examine later, is the “TGM
Unit Converter.” It is available at:

http://gorpub.freeshell.org/dozenal/blosxom.cgi/tgmconv.html

This converter accepts its input only in dozenal, and outputs it only in dozenal. It allows one
to specify exponential notation if desired, and also to specify the number of digits of precision
one desires (the default is 4). It contains links to a page specifying the acceptable units,
which is (almost) all of the TGM units, plus all the common metric and imperial/customary
units.

For stand-alone converters, which can be run even when an Internet connection is un-
available, this author is unaware of any options but for tgmconv. Part of the dozenal package
mentioned above, which includes doz, dec, and dozdc, tgmconv is a command-line program
which allows the conversion of TGM units to customary/imperial and SI metric units, and
vice-versa, along with the conversion of imperial/customary and SI metric units to each other
(though this is a side effect, not its intended purpose).

tgmconv carries the same options as its sister programs of the dozenal suite; namely,
-k for specifying precision, and -e for specifying that the output should be in exponential
notation. However, it also allows the specification of two other options, -i and -o. The first
indicates the unit that the input will be in; the second indicates the unit that the output
should be in. tgmconv does not check that these values make sense; if you specify input in
feet and output in joules, it will obediently apply the conversion factors and give you an
answer, which will be worth about as much as one would expect. It expects units to be given
to it according to a fairly particular but also fairly intuitive syntax, which can be found
explicated in abbreviated form on the Internet34 and in extended form in the manual.35

Queries to tgmconv are thus fairly intuitive, and like its sister programs, they can be
made from the command line, from a file, or to the program acting interactively. For a
further explanation of this, please see the manual; for example purposes here, we will use
command-line queries. So, for example, to convert a trip of 78.4 miles to quadquaGrafut,
execute this command:

34http://gorpub.freeshell.org/dozenal/blosxom.cgi/tgmconv.html
35Available in the normal place for man pages on your operating system, or at http://dozenal.

sourceforge.net/tgmconv_man.html.

http://hosi.org/cgi-bin/conv.cgi
http://gorpub.freeshell.org/dozenal/blosxom.cgi/tgmconv.html
http://gorpub.freeshell.org/dozenal/blosxom.cgi/tgmconv.html
http://dozenal.sourceforge.net/tgmconv_man.html
http://dozenal.sourceforge.net/tgmconv_man.html
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tgmconv -imi -o4^Gf "66;4"

(“66;4” is, of course, 78.4 in dozenal; if you’re not yet facile at converting such things mentally,
one can chain the dozenal programs together; try doz -k1 78.4 | tgmconv -imi -o4^Gf.)
This will obediently produce the correct answer of 18;6894. This is, of course, more precision
than you really have any right to, having given tgmconv only three significant digits; so if
that’s important to you, tell tgmconv to be careful about limiting its precision:

tgmconv -k1 -imi -o4^Gf "66;4"

Precision, in the dozenal suite, isn’t precisely significant digits; but one can use it to that
effect most of the time, and in this case tgmconv will produce the answer to three significant
digits, 18;6.

tgmconv, especially in conjunction with her sister programs in the dozenal suite, is a very
powerful program for using the TGM system, and a full perusal of its manual is worth the
read.
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Appendix A: Answers to the Exercises

Note that the decimal answers are analagous, not equivalent, to the TGM values. This is to
avoid introducing unnecessary traps of arithmetic into the answers when the goal is simply
to illustrate the TGM system.

Chapter 1: Digits and Bases

1. (a) 34, (b) 23, (c) 18, (d) 47, (e) 130, (f) 143.
2. (a) BB, (b) AA, (c) 3B, (d) 16, (e) 1B, (f) 2A.

Chapter 2: Spelling in Dozens

Answers include, but are not limited to:
1. Four unqua elv (fourqua elv); four dit elv unqua (14;E).
2. Five biqua nine unqua two; five biqua nine two; five dit nine two biqua (25;92).
3. Lev triqua ten biqua elv unqua ten; lev triqua ten elv ten; lev dit ten elv ten triqua

(3
E;XEX).

4. Six septqua, nine hexqua, seven pentqua, eight quadqua, four triqua, five biqua, nine
unqua, seven dit four five nine eight; six septqua nine seven eight four five nine seven
dit four five nine eight; six dit nine seven eight four five nine seven four five nine eight
septqua (76;9784 5974 598).

5. Zero dit zero nine eight four five eight seven six ; nine dit eight four five eight seven six
bicia (29;845876); nine bicia eight four five eight seven six.

Chapter 3: Time

1. (a) 7;9 Hr (b) 8;X Hr (c) 12;1 Hr (d) 1X;8 Hr (e) 5;46 Hr
2. (a) 2 a.m.(Calif.) is 2;0 hr. + 14 = 16;0 Hr (Hong Kong). (b) 9;6 Hr, + 14 = 21;6

i.e. 1;6 Hr the next day in Hong Kong. (c) 10;0 Hr, 24;0 = 4;0 Hr on the next day.
(d) 15;9 Hr, 9;9 Hr next day. (e) 1E;4 Hr, 13;4 next day.

3. 60 + 5 + ;4 = (a) 65;4 Hr, or (b) 65 4000 Tm

Chapter 4: Space

1. (a) 16 cu.Gf (0.625 m3) or 16 Vm (625 liters). (b) 16 2Tm or 0;16 Hr (d/625 s or 10
min 25 sec).

2. (a) 14−6Vl
20Tm = 0; 5Vl/Tm. 60−24

4 = 9mph/s. 100−40
4 = 15kmh−1s−1.

(b) 0;5 Gf/Tm2. 9 × 5280
3600 = 13.2ft/s2. 15 ×1000

3600 = 4.16m · s−2.
(c) 0;5 G. 13.2/32.1741 = 0.41026g. 4.16/9.80665 = 0.4249g.

Chapter 5: Matter and Force
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1. (a) 0;16 Vm (d/741 cc). (b) 0;08 Sf or 8 2Sf (9.876 sq.cm).
2. TGM: (5 - 3)Mg / 8 Mz = 0;3 G.

SI: (d/125 - 75) kgf / 200 kg = 0.25 g = 2.45 m/s2.
3. TGM: 3;26 Mg / 0;7 Sf = 5;6 Pm.

SI: d/83 kgf / 0.051 ×9.80665 m/s2 = 15.960 N/m2 or pascal
4. TGM: 14 Pm

SI: d/4700 kgf/m2 × 9.80665 m/s2 = 46.091 N/m2, say 46 pascal.
5. TGM: 3 2Mg / 7 3Sf = 5;19 4Pm

Cust: 10.5 / 0.6 = 17.5 ton/in2 = 39200 lb/in2.

Chapter 6: Work, Energy, Heat, and Power

1. (a) (16 - X) Gf × 16 Mg = 100 Wg. (b) 16 Mg × 16 Gf = 230 Wg.
(c) Since falling starts at zero velocity, the velocity at any instant is proportional
to time elapsed. In TGM v in Vlos is numerically equal to t in Tim. In metric
v = 9.8tm · s−2. Let t = time to reach the ground.
Average velocity 16/t Gf/Tm 3.25/t m·s−2

Final velocity 30/t Vlos 6.5/t m·s−2

which also equals t Vlos 9.8t
So final vel.

√
30 6 Vl

√
6.5× 9.8 7.98 m·s−1

(d) kinetic energy = 1
2mv

2; 16 Mz × 30 Vv = 230 Wg; 450 kg × (6.5 × 9.8)m2·s−2 =
28665 J. (e) 8 Mg × 20 Gf = 140 Wg. 2kN × 8 m = d/16 kJ. (f) Friction, i.e. heat
generated at the touching surface of box and ground. (g) (3.25 - 2.5)m × 450 kgf ×
9.8 N/kgf = 3307.5 N·m or J. (450 × 9.8)N × 3.25 m = 14332.5 J.
In TGM, due to G = 1, bodies falling from a rest hit the ground at a velocity equal
to the square root of twice the height, and with kinetic energy equal to twice the height
multiplied by the mass.

2. TGM on the left, SI metric on the right:
T1 1700 + 130 = 1830 2Cg d/273 + 18 = 291 K
T2 1700 + 1300 = 2X00 2Cg d/273 + 216 = 489 K
P2 P1 × T2

T1
2X00 1830 / = 1;82 1 Atm × 489/291 = 1.68 Atm
1;82 × 30 = 50;6 1.68 × 101.325 kPa = 170 kPa
50;6 - 1;8 = 4X;X Pm
4X;X/ 2E = 1;82 Atz

Chapter 7: Angles, Rotation, Radiation, and Perspective

1. 45 15 10 5 20 25 65 75 80 22.5 2.5 7◦30’ 1◦15’ 120
V3 V1 V08 V04 V14 V18 V44 V5 V58 V16 V02 V06 V01 V8
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2.

Angle V3 V5 V4 V16 V04 V18 V6 V8 1V4
Complement V3 V1 V2 V46 V58 V44 0 −V2 −V2 +θ = V6
Supplement V9 V7 V8 V

X6 V
E8 V

X4 V6 V4 −V4 +θ = 1 Pi
Opposite 1V3 1V5 1V4 1V16 1V04 1V18 1V6 1V8 V4 θ ± 1
Negative 1V9 1V7 1V8 1V

X6 1V
E8 1V

X4 1V6 1V4 V8 +θ = 2 Pi
3. (a) V6 (b) V3 (c) V4 (d) V4 (e) V82 (f) V18. Sum of angles always = 1V0.
4. (a) 6V0 (b) 5V0 (c) 2V0 (d) 2V0 (e) 3V0 (f) V9 (g) V8 (h) V86X35 (i) V94 (j) 135◦, 120◦,

128◦34’17”, 140◦.
5. (a) 10 rGf (10 rad) (b) 7;4 rVl (44 rad/s) (c) 1;2 rev/Tm (7 rev/s) (d) 120 rev/2Hr

(420 rpm).
6. (a) TGM: 7 RMg/6QMz = 1;2 rG. Cust.: 400 lb·ft/(340/32.2) lb·ft2 = 37.88 rad/s2.

(b) TGM: 7 RMg × 4π rGf = 73;E7 Wg. Cust.: 400 lb·ft × 4π rad = 5026.54 ft·lb.
7. (a) 56;84 unoctquaSurf (2.25 × 1022 m2) (b) 0;3499 Penz (1391 W/m2).
8. (a) 3 and 2;6 2rGf (0.02 and 0.1666. . . rad) (b) 7;6 4qSf (0.00033. . . sr).
9. 1;1 5Au. 1 parsec = 206265 AU. Parallax ”.76 is 206265 / .76 = 271×103 AU (= 51;1).

Chapter 8: Electromagnetism

1. (a) 6 Kr (3 A), (b) 1;8 Pv (720 W), (c) 1;8 3Wg (216 kJ), (d) 1;8 4Wg (720 kWh)
2. (a) TGM: C = 71× 6× 0; 24/47 = 2 4Kp

SI: 8.8× 10−12 × 6× .019/.0001 = .01µF
(b) TGM: RC = 6× 42 = 1 3Tm

SI: 104 × .01× 10−6 = .1 ms
(c) TGM: Imax = 316 / 6 = 3 3Kr

SI: 9 / 104 = .9 mA
(d) TGM: i = 33(; 77) = 1; X9 3Kr

SI: .9 mA (.632) = .5688 mA
3. Current = 22 / 320 = 1 Kr (.5 A). Time = 64 KrHr / 1 Kr = 64 Hr (d/76 hr).
4.

TGM SI
B = 12 6Fm / 8 3Sf = 1;9 3Fz 7×10−4 / (4×10−4) = 1.75 Wb/m2

Kurns for the air gap:
(31;9/92π)(21) = 2414 Kurns 1.75 / (4π×10−7)(2×10−3) = 2785 At

From graph:
H for B = 31;9 is 23 2Kn/Gf H for 1.79 Wb/m2 is 6500 At/m
Multiply by 0;9 Gf = 1830 Kn Multiply by .22 m = 1430 At
Total Kn = 3414 + 1830 = 5044 Total 2785 + 1430 = 4215 At
Divide by current: 5044 / ;6 = X088 Turns 4215 / .25 = 16860 turns

5. (a) 100 / 1400 = ;09; d/100 / 1600 = .0625. (b) 3340 × 0;09 = 26 3Pl; d/240 × .0625
= 15 V. (c) 3340 × 1;5 = 488 3Pl; d/240 × 1.41 = 339 V. 326 × 1;5 = 36;6 3Pl; 15 × 1.41 =
21.2 V. (d) 4 × ;09 = ;3 Kr; 2 × .0625 = .125 A.

Chapter 9: Counting Particles
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1. (a) 2×10 + 6 + 14 = 3X mu. (b) 3X mMz. (c) 3X× 238;X = 2;9X4 21Mz. (d) 46 mu ×
1.7×10−27 = 7.82 × 10−26 kg.

2. (a) 3X mMz × 2M = 78 Mz. (b) 46 mu × 2No = 92 g = 0.92 kg.
3. (a) Electrons per molecule: 2 × 6 + 6 + 8 = 22 (d/26). Per Molz: 22M. (b) 22 × 221;44

= 5;148 bitriqua. (c) 26 × 6 × 1023 = 1.56×1025.
4.

TGM SI
8;8 3Vm is ;8 Avolz 1.5×10−2 m3/2.24×10−2 m3 = .6818
;8 Avz × 1;6 Atz = 1 Mlz .6818 × 1.5 Atm = 1.023 mol

5. (a)
-2◦C × 10 = -20 = -18 d◦ RT = 8.3 × 273.15 = 2267.145 J/mol
Add 1700 and × 2 = 3188 2Wg/CgMlz

(b)
Divide by 2E Pm = 10E30 Vm, the Divide by 101325 N/m2 = .02237 m3;
Avolz. i.e., Vo

(c)
Divide by 1;6 (=× 0;8) = 8754 Vm, Divide by 1.5 = 0.0149 m3, the actual
the actual volume. volume.

6. See 5(a) decimal example above.
7. Molecular mass of NaCl = 1E + 2E = 4X. So:

4X 4Mz = 1 4Mlz 58 g = 1 mol NaCl
Molvity = 41/13 = 4 4Mlv Molarity = 1 / 5 = .2M solution

8. TGM: It = 10 × 41 = 1 pentquaQuel; a/v = 44 / 6 = 8;8
SI: 6 A × 3600 s = 21600 coulomb = 52 / 6 = 8.6
(a) TGM: Mass deposited = 58;8 / 95;7499 = 1;664 4Mz

SI: 21600 × 8.6 / (9.6487×104) = 1.94 g
(b) Thickness = Mass/(density × area)

TGM: 0;0001664 / (7;2 × 0;35) = 9;0E 5Gf
SI: 0.00194 kg / (7200 × 0.25) = 1.07× 10−5.

9. (a) 5;87X zH. (b) 6;21 dH. (c) 3.17 pH.

Chapter X: Doubles and Dublogs

1. (a) 5E, (b) 66, (c) 53, (d) 44, (e) 8X.
2. (a) 194;6E, (b) 60, (c) 30, (d) 16, (e) 45X;64, (f) 17;0X2, (g) 28;0X46.
3. (a) 4 × 8;6 1Gf (d/99 × 210 mm). (b) 2X biciaSurf (207.9 cm2).
4. (a) 6 × 4;3 unciaGrafut (d/148 × 105 mm). (b) 21;6 biciaSurf (155.4 cm2).

Chapter E: Looking at Light

1. (a) -3, (b) -4, (c) -3;6, (d) -4;6, (e) -2;6, (f) 5, (g) 7, (h) -1, (i) -4.
2. E = X0 QLd / 62Q = 3;4 Ld (E = d/140 cd / 22m2 = 35 lum/m2). (Q = (Gf-radial)2,

remember?)
3. 2.512 = 2;619, Dlg of which is 1;3E43, say 1;4.
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4. (a) -1.46 - 6.24 = -7.7 = -7;85. Divided by 0;9 = X;3 DBt. (b) 37;E- X;3 = 29;8 +
9„28;3- = 9,1;5 Abg = (without tables) is twice 4/3 = 2;8 neen times. (c) Dlg 9 = 3;2;
3;2 + 3;2 + X;3 = 14;7 DBl (answer). (d) 14;7 - 10 = 4;7 Abg = half as much again as
24. Sirius is 20 times the brilliance of Sun.

Appendix B: The Uncial System

Throughout this book we have used a system of referring to dozenal numbers that
we have called the “Uncial” system. This is, in fact, a system devised by a group of
dozenalists collaborating via the Internet, and its full name is Systematic Dozenal

Nomenclature. It is a system designed to be easily learned by new dozenalists, while still
being robust enough to cover all possible needs for referring to numbers with words. As
such, it is a system which is powerful in its simplicity, yet still remarkably versatile. We
have treated it thus far as a simple system of prefixes; this appendix gives a fuller explanation
of the system, with many more examples.

At the base of the sdn is a simple set of roots, one for each number in the dozenal
system. The roots selected for zero through nine are identical to those chosen by iupac;
these prefixes are internationally known and recognized due to their adoption by iupac, and
consequently engender little controversy among those who care about such things.

However, since sdn is intended for use with the dozenal system, an extension to the
iupac roots was necessary; namely, to provide roots for X and E. The roots chosen were dec
for ten, which is universally recognized as such, and lev for eleven, which is easily enough
derived.

To make these roots useful for counting, however, rather than merely for naming elements
(the chief purpose to which iupac puts them), sdn requires a further system. In brief, these
roots can be used in two primary ways:

1. As multiplier prefixes; that is, as simply indicating that the word to which they are
attached is to be multiplied by that number. An example of such a usage is the well-
known English prefix tri-, as in “tricycle” or “triangle”; the root simply indicates that
the “cycle” is in fact three cycles, and the “angle” is in fact three angles. The sdn
roots can all be used for such purposes; we will see an example of their use as such in
polygon and polyhedron names shortly. Sometimes, however, simply using the roots
will be ambiguous; in this case, clearly related multiplier forms must be used. See
Table 16 on page 8X.

2. As exponential prefixes; that is, as indicating that the word to which they are attached
is to be multiplied by twelve to the power of that number. We have used them in this
way consistently throughout this book; for example, a biquennium indicates that the
year (“ennium”) is to be multiplied by twelve (“qu-”) to the power of two (“bi”). The
prefixes may indicate either a positive or a negative power of twelve.

sdn must also provide an easy way to tell in which way the roots are being used; confusing
their use as multipliers with their use as powers would be intolerably ambiguous. There is
a big difference between a biquennium (100 years) and a biennium (2 years). A full table of
this system can be found in Table 16 on page 8X.
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Powers
Value Root Multiplier Positive Negative
0 nil nili nilqua nilcia
1 un uni unqua uncia
2 bi bina biqua bicia
3 tri trina triqua tricia
4 quad quadra quadqua quadcia
5 pent penta pentqua pentcia
6 hex hexa hexqua hexcia
7 sept septa septqua septcia
8 oct octa octqua octcia
9 enn ennea ennqua enncia
X dec deca decqua deccia
E lev leva levqua levcia

Table 16: The full Systematic Dozenal Nomenclature system.

Very simply, there are a mere twelve new words that must be learned by the beginner;
these are the words in the “Root” column in Table 16. Most of these words will already be
quite familiar to most learners, like the bi- from bicycle and the oct- from octopus.

When we write numbers in digits, we simply line them up according to place value
notation; so, e.g., 1 biqua, seven unqua, and four is “174.” These roots are combined in
precisely the same way. To form prefixes that refer to numbers higher than eleven, we
simply combine these roots so that they label each successive digit in the desired number.
E.g., to describe a mythical animal with unqua-two (decimal “fourteen”) feet, one might use
the word “unbipedal” (“un” for the digit “1,” “bi” for the digit “2” [completing the desired
number, “12”], and “pedal” to show that we’re talking about feet). This can extend as
far as one cares to extend it; if one were to actually count the legs on an odd (not to say
nonexistent) species of millipede, for example, one might find that it was hexquadoctapedal
(that is, that it has 648 legs); more likely, one would find that it is trinilipedal (has 30 legs).

The astute reader will have noticed, though, that we are not always simply cramming
the roots together to form these words. Sometimes we take the form of the word from
the “Multiplier” column of Table 16 instead of the word from the “Root” column. Take,
for example, “hexquadoctapedal”; why is it not simply “hexquadoctpedal?” There are two
possible reasons for doing this: first, for euphony, or more simply because not doing it makes
the resulting word hard to say; and second, to make our meaning clear. We will see how
using the root, rather than the multiplier, might create confusion later.

In most cases, however, using the root is perfectly acceptable; this is particularly common
for the roots for “two” and “three.” Take, for example, “bicycle.” “Bicycle” is a perfectly
regular use of sdn (indeed, one of sdn’s primary strengths is that it leaves such common
words untouched while still regularizing our system for speaking about numbers). We don’t
need to use the multiplier prefix to make this easier to say, and there’s no question that
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when we say “bicycle” we mean a two-wheeled vehicle. Similarly, consider “bipedal,” a
normal English word that is also perfectly correct sdn; the multiplier prefix is not needed.

However, consider a creature with four legs as a contrary example. In current, stan-
dard English we call such creatures “quadrupeds,” and say that they are “quadrupedal.”
“Quadpedal” is very difficult to say, and sdn does not require us to abandon the “-ru-”
and use the simple root “quad.” So sdn notes that, when using “quad-” to form words, it is
sometimes necessary to use the multiplier form rather than the simple root to make the word
more easily pronounceable. (Indeed, as we said before, sometimes it’s necessary to makes
the meaning clear, as well.)

An incredibly wide field is opened up by a regular system of roots and prefixes of this
sort; a few examples have already been provided, but they go on nearly forever. Presently,
for another example, we have bicycles, tricycles, “four-wheelers,” and “eighteen-wheelers.”
With sdn there is no question how to form appropriate compounds to cover these cases; in
addition to bicycles and tricycles, we have quadracycles and unhexacycles (“eighteen” being
spelled “16” in dozenal).

Again, presently we have centennials and bicentennials, but we’re consistently confused
about what to call d/150th anniversaries and d/350th birthdays of things. And what do we call
a fourtieth wedding anniversary again? sdn makes these questions easy; for dozenal analogs
we have unpentnilennials and tripentnilennials, and that fourtieth wedding anniversary (well,
four dozenth, anyway) is the quadnilennial (or quadrununquennial; but not quadunquennial,
which would mean the 1040 anniversary, not at all what is meant).

As for the power prefixes, we’ve been using them consistently throughout this entire
book, so their use should be fairly clear by now. Table 4 on page X gives a clear overview of
what each one is. However, the principle is simple: to form a positive power prefix, simply
add “-qua-” to the normal root prefix; to form a negative power prefix, add “-cia-”.

Just as multiplier prefixes may be strung together in place-value form, as for our mythical
“hexquadoctapedal” creature, so power prefixes can be so strung. Indeed, Table 4 itself
contains an example of such: “bibiqua,” meaning 1022. One simply forms the power as
normal; in this case, “bibi” for twoqua two (22). Then, one adds the exponential suffix,
“-qua,” to finish it off. “Bibiqua” can only possibly mean 1022; there is no ambiguity about
it. So we have wonderful words like “biquennium” for 100 years and “triquennium” for 1000;
perfectly regular, easy to pronounce, and easy to form.

Here, however, we come to a possible source of confusion. How do we form a word for
a period of 200 years? One way, the most straightforward, is simply to string together the
digits: “binilnilennium.” There’s certainly nothing wrong with this approach. On the other
hand, we might want to say “twice a biquennium,” and in this case we must be a bit more
careful. We can’t simply say “bibiquennium”; as we’ve already seen, “bibiqua” means 1022,
so “bibiquennium” means a period 1022 years, quite a bit longer than the period we’re trying
to express. Here, it’s necessary that we use the multiplier word rather than the simple root;
“binabiquennium” is what we want, an expression which clearly refers to 200 years. (Note
that this problem only arises when mixing multiplier and power prefixes; when such mixing
is not done, there is no issue.)

Similarly, “binabibiqua” means “twice bibiqua,” a very long period indeed. Another
example is 1063, the (very) approximate number of atoms in the observable universe. This
number is hextriqua: “hex” for the six, “tri” for the three, and “qua” to show that it’s
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sdn Applied to Polygons and Polyhedra
Polygons Polyhedrons

Sides/ Systematic Name Systematic Name
Faces Multiplier Power Traditional Multiplier Power

3 trigon triangle
4 quadragon rectangle quadrahedron
5 pentagon pentagon pentahedron
6 hexagon hexagon hexahedron
8 octagon octagon octahedron
X decagon decagon decahedron
10 unniligon unquagon dodecagon unnilihedron unquahedron
18 unoctagon icosagon unoctahedron
20 biniligon binunquagon tetracosagon binilihedron binunquahedron

Table 17: Systematic Dozenal Nomenclature applied to polygons and polyhedra.

an exponent. Hexatriqua, on the other hand, would be six (“hexa”) times triqua (1000),
meaning 6000.

When using the multiplier forms results in two vowels being stuck together (e.g., “pen-
taunqual”), an optional -n- can be inserted to prevent these vowels from being elided to-
gether. This gives “pentanunqual” rather than simply “pentaunqual.” Either is acceptable
provided that the vowels are pronounced clearly and separately.

One application of sdn can be found in Table 17 on page 90. The naming of polygons
and polyhedra is one area that can be immensely simplified by sdn. Polygon names in
particular are extremely irregular in English; we have the triangle and the rectangle (also
called the quadrilateral, and which when regular is called a square), but the pentagon further
up. Furthermore, higher-number polygons become irregular; we have “icosa-” as a prefix for
“twenty,” a prefix that is rarely used anywhere else. sdn uses the same prefixes that it
always does, simply affixing “-gon” for polygons and “-hedron” for polyhedra. Polyhedra
in particular are much more complex than this; this table only covers regular polyhedra,
specifically the Platonic solids. However, the simplification of the system is clear. (Note
that the power-prefix form of a 20-sided polygon, “binunquagon,” requires the use of the
multiplier form, “bin(a),” and not simply “bi.” “Biunquagon” would be a polygon with 1021

sides, not at all what is intended.)
Another area in which sdn substantially regularizes things is that of base names. Our

current system, such as it is, gives us no regular way of forming base names, and in fact
gives us another prefix meaning “twenty” entirely different from that used for polygons (see
Table 17). Not to mention that we get a “sen-” prefix meaning “six” and a “non-” prefix
meaning “nine” that we rarely see anywhere else. sdn fixes all this, producing a logical
system without any such irregularities or inconsistent roots.

Finally, let us briefly consider polynomials; or rather, the names that we apply to poly-
nomials. Some of these names are quite confusing. Consider, for example, the quadratic
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sdn Name Traditional
Radix Multiplier Power Name

2 binal binary
3 trinal ternary
4 quadral quaternary
5 pental quinary
6 hexal senary
7 septal septary
8 octal octal
9 ennal nonary
X decal decimal
E leval
10 unnilimal unqual duodecimal, dozenal
14 unquadral hexadecimal
16 unhexal
18 unoctal vigesimal
20 binilimal binunqual quadravigesimal
50 pentnilimal pentaunqual sexagesimal

Table 18: Systematic Dozenal Nomenclature applied to number bases.

equation, of the form ax2 + bx + c. The term “quadratic” comes from the Latin quadrus,
meaning “square,” and such equations are so called because the highest-order exponent in
them is a square. However, when we square algebraically rather than geometrically, we no
longer have four sides (making the name “quadratic” logical), but rather a superscripted
two, which makes the term “quadratic” confusing. (Many beginners expect it to have a four
in it somewhere, not realizing that it really only refers to a square.) sdn solves this problem
by using the suffix “-ate,” similar to that in quadratic; however, it attaches this to the root
expressing the highest-order term in the polynomial. So a quadratic equation, in sdn is
called a binate equation, because the highest-order exponent is, in fact, a two. This can be
extended; e.g., the example of a binate equation given above has only one variable, making it
a univariate binate equation; one with two variables is instead a binavariate binate equation,
and one with two variables and a fifth power as its highest-order exponent is a binavariate
pentate equation. Regularize, simplify; these are the watchwords of sdn.

Thus far the sdn system permits the formation of words for any integer, an impressive
enough feat on its own. However, sdn can also produce words even for fractional values. It
can do this in two ways: by simple place notation, and by the use of the fractional affix.

The first of these is the simplest. We have already observed the formation of roots by
means of place notation; e.g., to form a word for “247,” we simply concatenate the appropriate
roots: “biquadsepta.” By using the Humphrey point (pronounced, in the dozenal world,
“dit”), we can extend this to include any other value. We’ve seen that once every two years
can be expressed as “biennially”; now we can say that twice every year (or, rather, once every
half-year, or “semiannually”) can be expressed as “dithexennially” (since one half, in dozenal,
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is 0;6, “dit six”). Similarly, publishing once every two weeks (twice a month, twenty-four
times a year; also known as “biweekly”) could be expressed as “ditnilhexennially” (0;06 of a
year) though clearly “biweekly” in this case is the better choice.

This method works wonderfully when the fractional value is rational; that is, when it
terminates in some limited, and preferably few, number of digits. But what about long or
repeating fractions, such as one seventh (in dozenal, 0;186X35)? “Ditunocthexdectripenten-
nially” is clumsy enough; the fact that this only covers a single period of the repeating digits
makes the option clearly unacceptable.

For this purpose, sdn offers a fractional affix, “-per-”, which rather than expressing
uncials (like “dit”) expresses division, allowing the formation of arbitrary fractions. So, for
example, our problem expressing 1/7 with the simple “dit” root disappears, for we can simply
say “persepta” rather than “septa,” which means “one seventh” rather than “seven.” Any
root to the left of the “per” becomes a numerator, while anything to the right becomes a
denominator. E.g., “bipersepta” means “2/7,” and “quadperpentnil” means “4/50.”

“Per” can also be used with exponential words. Pergrossages will, of course, replace
percents in the dozenal world; these can easily be referred to with “perbiqua.” E.g., “37/100”
can be “threequa seven perbiqua.” If one wished to make it entirely one word, one could
say that it was “triseptaperbiqua,” perhaps to describe the results of a poll (e.g., “Support
for the measure was merely triseptaperbiqual”). Which form to use is, of course, up to the
speaker.

It should be noted that “per” cannot span multiplier prefixes; it is limited to the roots
which are adjacent to it. In other word, division (by “per”) is higher precedence than mul-
tiplication (by the multiplier forms of sdn roots). Without this rule, expressing a complex
unit quantity like “37/89 trinaHours” (tri (number root) + na (multiplier) + Hours (unit) is
regular sdn for “three-hour period”) would be difficult to do unambiguously. “Triseptaper-
octennatrinaHours” might mean “37/893 Hours” instead, because there’s no way to determine
where the denominator of the fraction ends. With this rule, on the other hand, “triseptap-
eroctennatrinaHours” is perfectly regular and unambiguous; to express “37/893 Hours,” we
would instead say “triseptaperoctenntrinaHours.”

Clearly, the necessity for such constructions will be quite unusual. Nevertheless, sdn
must provide for the creation of words describing all numbers, and so the constructions are
available. We have, then, a system for creating words for any number, integral or fractional,
using only twelve roots, two power particles (“qua” and “cia”), a fractional point particle
(“dit”), and a reciprocation particle (“per”).

sdn is, all in all, an admirably simple system which nevertheless meets all the most
complex requirements of a modern and scientific civilization. Its use is encouraged for all.

Appendix C: Further Reading

C.1 On Dozenalism
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Appendix D: Some Common Physical Constants

TGM Values Metric Values

Sym. Description Value Units Value Units

g Accel. of Gravity 1 G 9.810049 m/s2

M Avogadro’s No. (TGM) 1;439X9197 22Mlz−1 6.02214129× 1023 mol−1

mu Atomic mass unit (mMz) 8;9X82E6996 23Mz 1.660538921× 10−27 kg
Atz Atmos. Pressure Std. 2E Pm 1.015204× 105 N/m2

R Gas Const. 1;EX781X2 PmVm/Cg 8.3144621 J/mol·K
Vm Normal Gas Volume 1;0E79410 4Vm/Mlz 2.2413968× 10−2 m3/mol
c Light Speed (Vacuum) 4XE4 9923;07EE Vl 299,792,458 m/s
ly Lightyear 2;0E061605 13Gf 9.4605284× 1015 m
µ0 Permeability of Space 2π 9Gn/Gf 4π × 10−7 H/m
ε0 Permittivity of Space E;490614979 8Kp/Gf 8.854187817× 10−12 F/m
G Gravitational Const. X;46681 9QMg/Mz2 6.67384× 10−11 N·m2/kg2

h Planck’s Const. 1;8X658E3X 28WgTm 6.62606957× 10−34 J·s
c1 First Radiation Const. 2;0246X47E 16Pv/Sf 3.74177153× 10−16 W/m2

c2 Second Radiation Const. 5;X0X0372 1GfCg 1.4387770× 10−2 m·K
R∞ Rydberg’s Const. 1;1058E4XE42177 6Gf−1 1.0973731568539× 107 m−1

k Boltzmann’s Const. 1;569458E 22Wg/Cg 1.3806488× 10−23 J/K
e Electron’s Charge 4;1690908X7 15Ql 1.602176565× 10−19 C
me Electron’s Rest Mass 8;44662383 26Mz 9.10938291× 10−31 kg
mec2 Electron’s Rest Energy 1;49X4E001 12Wg 8.18710506× 10−14 J
e/me E.’s Mass/Energy Quot. -5;E1273829E 10Ql/Mz −1.758820088× 1011 C/kg
re Electron’s Radius 1;029EE92158 11Gf 2.8179403267× 10−15 m
ePl electron-Pel 4;1690908X7XE6 15Wg 8.712607996978× 102 eV
Me Emelectron 5;749799 9Ql 2.585036× 104 faraday
mp Proton’s Rest Mass 8;X7E24X280 23Mz 1.672621777× 10−27 kg
mpc2 Proton’s Rest Energy 1;5X603611E EWg 1.503277484× 10−10 J
e/mp Pr.’s Mass/Energy Quot. 5;6XE65325 9Ql/Mz 9.57883358× 107 C/kg
mn Neutron’s Rest Mass 8;X98456520 23Mz 1.674927351× 10−27 kg
mnc2 Neutron’s Rest Energy 1;5X96X5232 EWg 1.505349631× 10−10 J
µB Bohr magneton 9;X16X65E8 19Wg/Fz 9.27400968× 10−24 J/T
Ci Curie 1;2E330766 9Tm−1 3.7× 1010 s−1

σ Stefan-Boltzmann Const. 1;582709 1XPv/SfCg4 5.670373× 10−8 W/m2K4

Table 19: Some Common Physical Constants, in TGM and SI metric
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Index

absolute zero, 2X, 2E, 31, 33
acceleration, 18–1X, 23, 24, 26, 28, 2X, 34, 36, 3E,

41, 96, 98, 99
acidity, 5X, 60
alkalinity, 5X
alternating current, 51–53
ampere, 47, 48, 4X, 51
Andrews, F. Emerson, 77, 93
angle, 37–43, 4X, 51, 78, 86, 87, 89, 90, 98
area, 1E, 20, 24, 28–2X, 34, 41, 42, 44, 54, 55, 5E,

66–6E, 75, 88, 96
Astru (Au), 42 , 42–44, 71, X2
Atmoz (Atz), 28 , 28, 30, 33, 58, 98, X3
auxiliary units, 16, 26, X1

base (number), ix, x, 3–8, X, E, 13, 16, 19, 25, 49,
61–63, 69, 77, 78, 90

Beard, Ralph, 93
Bictic, 16
binary, 4, 5, 67, 91
Block, 16

calendar, 17
Calg (Cg), 30 , 31, 57, 9X
calorie, 30
candela, 6X, 70, 9X
capitalization of units (TGM), E
Celsius, 2E–33, 57, 58, X3
coulomb, 48, 49, 53, 54, 88, 99, X0, X3
Cupvol, 21, X3
current, 46–53, 55, 59–5E, 87, 99

alternating current, 51–53
direct current, 52

day, 3, 13–1X, 28, 2X, 2E, 31, 38, 3X, 76, 85, 96, X1,
X2

leap day, 17, X1, X2
de Vlieger, Michael, 7, 93
dec, 77, 79, 80
Decigree, 31, 33, 36, 57, 5E, X3
decimal, ix, x, 4, 5, 7–9, E, 10, 14, 16, 17, 1E, 21,

30, 33, 34, 37, 38, 3E, 49, 58, 5E, 61, 63,
66, 68, 69, 75–78, 80, 85, 88, 8X, 91, 93,
X3

decimal symbol, E

inadequacies of, 5–6
decimal point, 3, 9, E
decimal symbol, E
density, 24 , 24–26, 28–2X, 34, 41, 4E, 50, 54, 55,

5E, 6X, 6E, 88, 97, 9X, X0
Denz (Dz), 26 , 26, 28, 5E, 97, 98
digits, Pitman, 7
dioptre, 41
direct current, 52
dit, 9, 10, 42, 79, 85, 91, 92
Double, 60–66, 69, 6E–71, 88
doz, 77, 79, 80
dozdc, 61, 62, 78, 79, 80
dozenal, ix, x, 6–E, 14, 15, 17, 18, 1E, 21, 29, 33,

37–39, 49, 5X, 60–63, 66, 69, 75–79, 80,
81, 89, 8E, 91–94

dit, 9, 10, 42, 79, 85, 91, 92
dozenal symbol, E
fractional point, 9
new symbols, 7
superiority of, 6

dozenal point, 9
dozenal symbol, E
Dub-, 69, 6X, 70, 71
dublogs, 61–63, 65, 70, 71, 88
Duodecimal Bulletin, The, 7, 17, 93
dyne, 26

electricity, 45–48, 50, 51
analogy to water, 47

electrolysis, 59, 5X
electromotive force, 50, 51, 53, 99
electron-Pel, 48 , 48, 98, X3
electron-volt, 48, 99, X3
electrons, 19, 44–49, 50, 52, 53, 57, 59, 5E, 88, 95,

99, X3
Elgra (Egr), 54 , 54, X0
energy, 24, 2X, 2E , 2E–31, 34–36, 3E, 41, 48, 55,

86, 95, 98, 99, 9E
kinetic, 2E, 35, 36, 86
potential, 2E, 34–36

-ennium, 17
erg, 34
exponential notation, E

X4



INDEX X5

Fahrenheit, 2E, 31, 32
Flenz (Fz), 4E , 4E–51, 9X
Flum (Fm), 4E , 4E, 51, 53, 9X, X0
flux density

magnetic flux density, 4E, 9X
foot, ix, E, 13, 19, 1X, 20, 26, 34, 37, 3E, 41, 75, 79,

7X, 80, 96, 97
force, 24, 26–2E, 34–36, 3E, 46, 47, 4X–51, 53, 85,

97, 99
electromotive, 50, 51, 53, 99
magneto-motive force, 4X–50, 99

fractions, common, 5
Freq (Fq), 65 , 65, 66, 6X, 98, 9E
frequency, 53, 60, 62–66, 6X, 98, 9E

Galileo, 18
gallon, ix, 20, 21, 7X, X3
Galvol, 20, 21, 7X, X3
gas constant, 57
Gee (G), 21 , 21, 24, 27, 3E, 41, 7E, 96, 98
Gen (Gn), 51 , 51, 9X
Grafut (Gf), ix, 13, 18, 19, 1X , 1X–21, 27, 28,

2E, 37, 38, 40–44, 47, 4E–51, 54, 67–69,
6E–71, 79–80, 88, 96, X2

gravity, 8, 18–1X, 21, 24, 27, 28, 34, 35, 46, 62,
94–96, X5

heat, 2X–31, 33, 34, 36, 47, 55, 86, 98, 9X, 9E
latent heat, 33, 34, 9E
specific heat, 2X–31, 9X

henry, 51, 9X
hertz, 65
hexadecimal, 5, 91
horsepower, 34
hour, X, 14–16, 18, 22, 23, 35, 36, 3X, 41, 48, 4X,

55, 59, 5E, 7E, 92, 96, X1
Humphrey, H. K., 9

Humphrey point, 9, 78, 91

imperial-customary
inadequacies of, ix–x, 20, 27
standard atmosphere, 28
standard gravity, 19

inch, ix, E, 13, 19–1E, 28, 29, 75, 79, 7X, 96, X3
inductance, 50, 51, 53, 9X
iupac, 9, X, 89

joule, 2E, 30, 3E, 48, 80

Kap (Kp), 49 , 49, 4X, 54, 99
kelvin, 2E–33, 57, 9X
kilogram, 25–27, 30, 56, 58, 5X, 5E, 7E
kilogram-force, 27
Kur (Kr), 47 , 47–49, 4E, 51, 53, 55, 5E, 99
Kurn (Kn), 4X , 4X–50, 99

latent heat, 33, 34, 9E
leap day, 17, X1, X2
leap year, 17, 96, X1
light, 13, 1X, 41, 47, 54, 65, 6X–70, 88, 95–97, 9X,

X0, X2, X3
liter, ix, 1E, 20, 26, 5X
liter badly defined, 26
lumen, 6X, 9X
Lyde (Ld), 6X , 6X–70, 9X
Lypov (Lp), 6X , 6X, 6E, 9X
Lyqua (Lq), 6E , X0

Mag (Mg), 26, 27 , 27–29, 36, 3E, 41, 47, 4E, 97,
99

magnetic flux, 46, 47, 4X, 4E, 99, 9X
magnetic flux density, 9X

magnetism, 44–47, 4X, 4E
magneto-motive force, 4X–50, 99
Magra (Mgr), 4E , 4E, 50, X0
Malone, James, 93
mass, ix, 8, 13, 18, 19, 20, 21, 24 , 24–2X, 34–36,

41, 44, 45, 56–5E, 62, 7X, 7E, 86, 88, 94,
95, 97, 99, X3

mass v. weight, 27–28
matter, 18, 24, 27, 2X, 44, 46, 7E, 85
Maz (Mz), ix, 13, 1E, 24, 25 , 25–28, 2X–31, 33–

35, 3E, 41, 56–5E, 69, 7E, 97, 99, X3
Meab (Mb), 4E , 50, 9X
mercury, 28, 29, X3
meter, ix, E, 13, 19–20, 22, 25, 26, 28, 29, 2E, 34,

36, 37, 3E, 41, 42, 44, 47, 4E, 53, 54, 58,
66–68, 7X, 7E, X5

meter badly defined, 13
metric (SI)

capitalization of units, E
cgs, ix, 26
error in definition of liter, 26
error in definition of meter, 13
imposed by law, ix
inadequacies of, ix, 13, 20, 25–27, 58
mks, ix
standard atmosphere, 28
standard gravity, 19

minute, 14–16, 18, 19, 34, 37, 3X, 3E, 41, 65, 76
Mit (Mt), 53, 54 , 54, 9X
molality, 58, X0
molarity, 58, 5E, 88, X0
Molm (Mlm), 58 , X0
molmity, 58, X0
Molv (Mlv), 58 , 58, 5X, 60, X0
molvity, 58, 5E, 88, X0
month, 16–18, 43, 75, 92, X1, X2
music, 60, 63, 66, 93



X6 INDEX

neutrons, 44, 45, 95
newton, 26–28, 2E, 3E, 47, 4E, 97
Newton, Sir Isaac, 18, 24, 26

octave, 60, 63–65, 69, 6X
Og (Pl/Kr), 48 , 48–4X, 55, 99
Oumz (Oum), 25 , 25, 26, X3
Oumzvol, 20, 21, 25, 26
ounce, 20, 25, 97, X3

troy ounce, ix, 13

parallax, 43, 44, 87, X2
pascal, 28, 29, 86
Pel (Pv/Kr) (Pl), 47, 48 , 48–4X, 50, 51, 55, 95,

98, 99, X3
Pendlebury, Tom, x, 7–E, 16, 20, 21, 3E, 62, 66, 93
Penz (Pz), 34 , 34, 41, 87, 9X
Per-, 41
Perfut (PGf), 41, 42 , 42, X0
perspective, 37, 42, 43, 86
pH, 5X–60, 88
Pi, 37–3X, 43, 44, 87, 98, X2
pi, 37–3X, 41, 4E, 50, 52, 54, 78, 87, 95, 98
pint, ix, 20, 21, 25, 26, 7X, 97, X3
Pintvol (Tumblol), 20, 21, 25, 7X, X3
pitch, 65, 66
Pitman digits, 7
Pitman, Sir Isaac, 7, 8
pound, ix, 13, 20, 25–28, 34, 3E, 7E

troy pound, ix, 13
poundal, 26
pounds-force, 27, 28
Poundz (Lbz) (Kilg (Klg)), 25 , 25, 26
Pov (Pv), 34 , 34–36, 41, 47, 49, 4X, 6X, 98, 9X
power, 2X, 34, 35, 41, 47, 55, 61, 6X, 86, 98, 9X, X0

density, 34
power density, 34
specific power, 34

Prem (Pm), 28 , 28–2X, 30, 33, 36, 97, 98, 9E, X3
pressure, 24, 25, 28–2X, 30, 31, 33, 34, 36, 47, 57,

58, 5E, 95, 97, 9E
protons, 44, 45, 57, 95

QuaraLyde (QLd), 6E , 70, 9X
quart, ix, 5, 13, 18, 1X, 20, 21, 38, 3X, 42, 60, 61,

66, 7X, 7E, 93, X3
Quartol, 20, 21, 7X, X3
Quel (Ql), 48 , 48, 49, 88, 99, 9E, X3
Quenz (Qz), 54 , 54, X0

radiation, 37, 3E, 41, 47, 6X, 86, 95
rankine, 2E, 32
rotation, 37, 3E, 41, 86, 99, X0, X1

Schiffman, Jay, 93

Seely, F. Howard, 93
Senz (Sz), 70 , 70, 9X
Sipvol, 21, X3
solenoid, 4X
specific heat, 2X–31, 9X
specific power, 34
speed, 18–1X, 21–23, 47, 54
speed v. velocity, 21
standard atmosphere, 28, 29, X3
standard atmosphere (SI), 28
standard atmosphere (TGM), 28
standard gravity (imperial-customary), 19
standard gravity (SI), 19
standard gravity (TGM), 1X
stress, 28, 29, 97, X6
stress, 29
Supvol, 21, X3
Surf (Sf), 1E, 20 , 20, 28, 29, 34, 3E–41, 51, 54,

67, 68, 6X, 87, 88, 96, 98
symbols for ten and elv, 7
Systematic Dozenal Nomenclature (SDN), x, 89–

92

tesla, 9X
tgmconv, 80, 81
Tick, 16
Tim (Tm), ix, 13, 14 , 14–19, 1E, 27, 34, 40, 41,

48–4X, 51, 53, 62, 65, 86, 96, X1, X2
Tregree, 31–33, 57
tropical year, 16, 17
troy ounce, ix, 13
troy pound, ix, 13
Tumblol (Pintvol), 20, 21, 25, 7X, X3

Unctic, 16

velocity, 1X, 21, 23, 36, 40, 41, 50, 86, 96–98, X2,
X3

velocity v. speed, 21
Vlos (Vl), 21 , 21–23, 35, 40, 41, 50, 51, 54, 86,

96–98, X2
Volm (Vm), 1E, 20 , 20, 21, 24–26, 28, 41, 57, 58,

5E, 7X, 96, 97, X3
volt, 47–4X, 50, 51, 55, 99, 9E
volume, ix, 1E–21, 23–26, 2X, 48, 56–58, 5X, 7X, 88,

95–97, 9E, X0, X3

water
analogy to electricity, 47

watt, 34, 35, 41, 47, 49, 6X, 98
weber, 4E, 9X
week, 15, 76, 92, X1
weight, 13, 21, 24 , 24, 27–2X, 35, 56, 5E, 69, 7E, 96
weight v. mass, 27–28
weightlessness, 28
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Werg (Wg), 2E , 2E–31, 33, 34, 48, 98, 99, X3
work, 2X , 2X, 2E , 2E, 34, 35, 38, 41, 47, 52, 86, 98,

99

year, E, 16–18, 75, 89, 8E, 91, 92, X1, X2
leap year, 17, 96, X1
tropical year, 16, 17

Zirkel, Gene, 76, 93
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