The Duodecimal Bulletin Volume 3 - No. 2 June, 1947 ## THE DUODECIMAL SOCIETY OF AMERICA 20 Carlton Place ~ ~ ~ ~ Staten Island 4, N. Y. is a voluntary nonprofit organization for the conduct of research and education of the public in the use of Base Twelve in numeration, mathematics, weights and measures, and other branches of pure and applied science. Full membership with voting privileges requires the passing of elementary tests in the performance of twelve-base arithmetic. The lessons and examinations are free to those whose entrance applications are accepted. Remittance of \$6, covering initiation fee (\$3) and one year's dues (\$3), must accompany applications. The Duodecimal Bulletin is the official publication of the Duodecimal Society of America, Inc., 20 Carlton Place, Staten Island 4, New York. George S. Terry, Chairman of the Board of Directors. F. Emerson Andrews, President. Ralph H. Beard, Editor. Copyrighted 1947 by The Duodecimal Society of America, Inc. Permission for reproduction is granted upon application. Separate subscriptions \$1 a year. #### CONTENTS | A Reckoning Reform | Isaac Pitman | 1 | |---|---|----------| | Donations and Contributions | | 5 | | Disingenuous Dissuasions | Ralph H. Beard | 6 | | To Calculate the log ₁₀ 2 | Harry C. Robert, Jr. | X | | Finding Square Roots | George S. Terry | 10 | | Tables of the Endings of Squares | 10.000 | 11 | | Square Sums of Consecutive Squares | George S. Terry and
Harry C. Robert, Jr. | 12 | | Basimals or Radicimals | | 13 | | Prime and Factor Table | | 14 | | Notes on the Arabic Numerals
Query | George S. Terry | 18
18 | | Periods of Primes | Ralph H. Beard | 19 | | Periods and Submultiples of Reciproc | cals of Primes
George S. Terry | 12 | | The DeFrance Algorithm for Finding of Period of Reciprocals of Primes | | 12 | | Mathematical Recreations | Mary Lloyd, Editor | 21 | | The Mail Bag | | 22 | | Answers to Cryptarithms | | 24 | | How to Count by Dozens | | 25 | # The Duodecimal Bulletin # SIR ISAAC PITMAN ON THE DOZEN SYSTEM A RECKONING REFORM From the "Bedfordshire Independent," 24 November I have been highly gratified with the letters on education, and on a phonetic (that is a strictly alphabetic) orthography, that have for many weeks appeared in your columns; and now another boon is presented by "Vox Clamantis," in Duodecimal Arithmetic, as a substitute for Decimal Money, which Lord Overstone, and the Queen's Commission on a decimal currency, and the London bankers cannot work. The introduction of decimal money to supersede our present duodecimal money, (as to the penny and shilling, which are the centre and foundation of our coinage,) would be an act unbefitting any nation acquainted with the elements of mathematics and the properties of numbers. It would be a needless and most hurtful alteration; we should be giving up a good number for a bad one. Until we can get a quarter of ten in whole numbers, decimal money, weights and measures must be voted an absurdity. In the number TWELVE, with the Arabic notation, and its marvelously simple and effective expedient of marking the place of vacancy by a "O" when returning upon the number assumed as the basis of calculation, adding to the ten ordinary figures "T" modified to "Z" for ten, and "E" altered to "Z" for eleven, (with which I am able to supply your compositor,) we have a universal arithmetic, adapted to our present money, (except the £1, which must be given up as to its name, and might be as to its value,) adapted to our present measures, the inch and foot, adapted to our time in some respects, and which may be adapted to our weights by merely dividing the avoirdupois pound into twelve instead of sixteen ounces. The nomenclature and the practice of duodecimal counting, as to its general principles, are already in existence in the "dozen" and "gross, "—numbers which on account of their convenience, arising from their divisibility, are more used in trade for counting articles than are "tens" and "hundreds," although our arithmetic is based upon ten. To the universally recognized names "ones" (or units), "dozens, " and "grosses, " to express the values of the first three figures in arithmetic, we have only to add "triples" or the third power, and "miliads" (a variation of "millions,") for the fourth and seventh figures, (or any other more appropriate names,) and our numeration table is complete; thus, grosses dozens miliads of triples of triples triples grosses dozens ones 8, 4 3 7, 9 6 2 10 represents one dozen; 11, one dozen and one; 28, two dozen and eight; 347, three gross four dozen and seven; 4,612, four triples, six gross, one dozen and eleven; 7,654,321, seven miliads, six gross, five dozen and four triples, three gross, two dozen and one. A triple (1,000) is 1,728 of the present notation. A convenient nomenclature between twelve and a gross, might be formed by linking the dozens and units by means of the final syllable of "dozen;" thus, as for six tens and eight we say sixty-eight (ty being a contraction of ten) so for four dozen and three, written duodecimally 43, we might say fourzen-three; 57 fivezen-seven, etc. Seven and eleven, the only words in counting a dozen that are not monosyllables, might be, in these compounds, contracted to sen and lev; as we say senit (se'nnight) for seven-night; thus, 75 would be senzen-five; 29, levzen-nine. Let all numbers be written down in this manner, keeping our twelve pence in the shilling, twelve inches in the foot, and divide the pound into twelve ounces, and all ciphering becomes child's play with plain figures, and is performed by the simple rules of Addition, Subtraction, Multiplication, and Division. There are no more divisions of pounds, shillings and pence, with 12 and 20 as divisors; of ounces, pounds, quarters and hundreds, with 16, 28 and 4 as divisors; of inches, feet, yards, rods and furlongs, with 12, 3, 5½, 40 as divisors; and numerous variations of these weights and measures, as applied to different articles in different parts of the country; but instead of this Babel of figures, the most complicated arithmetical operation, such as a calculation of the measurements of a house, and cost of building, with masons', carpenters', painters', and other work, will be performed by the simple rules of arithmetic. The following are the tables of money, weights and measures which such a revolution in arithmetic would require. #### MONEY | 4 | farthing: | s | ma | ake | , | | 1 | penny | |----|-----------|-------|-----|-----|---|--|---|-------| | | (twelve) | | | | | | | | | 10 | (twelve) | shill | ing | zs | | | 1 | mark | | | (twelve) | | | | | | | | The banco means a bank-note of the value of twelve marks. or £7 4s., and might take the place of our present £5 note, 38,614½p.=3 dozen and 8 bancos, 6 marks, 1 shilling, and 4½d. #### WEIGHTS 10 (twelve) ounces make 1 pound 1,000 (triple) pounds 1 load No denomination is wanted between the pound and the load, except dozens of pounds, and grosses of pounds, or, in the curt language of the market, "dozens" and "grosses." #### LONG MEASURE 10 (twelve) inches make 1 foot 1,000 (triple) feet 1 walk 1,000,000 (miliad) feet 1 distant The "walk," nearly one-third of a mile, might be employed to measure geographical distances, and the "distant" to measure astronomical distances. No denomination between a foot and a walk, (except the yard of 3 feet,) and between the "walk" and the "distant" would be necessary. Intermediate distances, such as 763 feet, would be called 7 gross, 6 dozen, and 3 feet. The circumference of the earth, reckoned at 25,000 miles, would be duodecimally, 38,000 walks, nearly as comprehensible a number. The distance of the earth from the sun, reckoned at 95,000,000 miles, would be, duodecimally, 81,000 distants—a much more comprehensible number, keeping in mind that a distant is about 560 miles. #### LIOUID MEASURE 10 (twelve) drams make 1 pint 1,000 (triple) pints . . . 1 cask #### TIME | | (twelve) | | make | 1 | prime | |----|----------|-----------|---------------|---|-------| | 10 | (twelve) | primes . | | 1 | round | | 10 | (twelve) | rounds . | | 1 | beat | | 10 | (twelve) | beats (of | 2 hours each) | 1 | day | A "prime" is five-sixths of the present minute. I will now apply duodecimal arithmetic to the business of life, in one or two instances. Until the duodecimal multiplication table is learned, the common decimal multiplication table may be employed, the products being turned into shillings and pence by the pence table. What is the value of 347 (3 gross, 4 dozen, and 7) articles at 9s. 4d. each? New Method Answer. -2 dozen and 7 bancos, 6 marks, 9 shillings, and 4 pence. Contrast this with the present method of working. 3 gross, 4 dozen and 7 are four hundred and eighty-seven. What is the value of 1761 (1 triple, 7 gross, 6 dozen and 1) yards of cloth, at 16s. $7\frac{1}{2}d$. per yard. 16s. $7\frac{1}{2}d$. are 1 mark, 4 shillings, and $7\frac{1}{2}d$. New Method 1761 147½ 2467 6604 1761 990½ 230,377½ with 34 figures. Or 2 gross and 3 dozen bancos, 3 marks, 7 shillings and $7\frac{1}{2}$ d. Old Method $\begin{array}{r} 487 \\ 9 \\ \hline 4383 \\ 4d. = \frac{1}{3} \begin{array}{r} 162 \\ 4 \end{array}$ 20) 4545 4 $\begin{array}{r} £227 \\ 5s. 4d. \end{array}$ The last operation requires 27 figures, and the other 10, In addition to this, in the old method several mental processes must be effected, while the other is a plain multiplication sum. Old Method 1761 in duodecimals are 2809 in decimals. $\begin{array}{r} 2809 \\ \hline 16 \\ \hline 16854 \\ 2809 \\ 6d. = \frac{1}{2} \quad 1404 \quad 6 \\ 1d. = \frac{1}{8} \quad 234 \quad 1 \\ \hline 20) \quad 46699 \quad 7\frac{1}{2} \\ \hline £2334 \quad 19s. \quad 7\frac{1}{2}d. \text{ with} \\ 59 \quad \text{figures.} \end{array}$ Or 2809 $10s. = \frac{1}{2}$ 1404 10
$5s. = \frac{1}{2}$ 702 5 $1s. = \frac{1}{5}$ 140 9 $6d. = \frac{1}{2}$ 70 4 6 $1d. = \frac{1}{6}$ 11 14 1 $\frac{1}{2}d. = \frac{1}{2}$ 5 17 $0\frac{1}{2}$ £2334 19s. $7\frac{1}{2}d.$ with 62 figures. The same contrast of length and complexity on the one hand, with brevity and simplicity on the other, would be found in calculating lengths, liquids, etc. If anyone should say that the introduction of duodecimal arithmetic, although it would be manifestly productive of so many benefits, is a practical impossibility, I would only reply, "This is the year 1857; see what has been effected, and then doubt of the practicability of anything that is good if you can. " A desire to simplify our money and accounts is now extensively felt. That something must be done, everybody who understands arithmetic is convinced. The writer of the article "Weights and Measures," in the "Penny Cyclopaedia says, "The subject of weights and measures is one the actual state of which is prosperous in the inverse ratio of the number of books or the length of articles which are written upon it. There is nothing in it which might not, if the most natural and simple system were adopted, be described in a very few pages. We are speaking of course only with reference to a possible time; for, let that time arrive when it may, the history of the past must be a confused and repulsive subject. " The present may be the beginning of the "possible time" if we like to make it so. The work must commence with the young, and with those few adults who look forward and out of themselves, and not backward and to themselves alone. Duodecimal arithmetic may be introduced into all schools as a mental exercise, just as calculations in several scales are practised in our universities; and when a conviction of the superiority of twelve as a basis has become general, it will be employed in business accounts by those men who when youths at school acquired facility in working duodecimal arithmetic. Bath, England, 14 November, 1857 ISAAC PITMAN. #### DONATIONS AND CONTRIBUTIONS We wish to express the warmth of our gratitude to Herbert K. Humphrey for his gift of \$50.00 to the Society, and to George S. Terry for a further contribution of \$500.00. There is only one real acknowledgment for these generous donations, and that is our work for the growth and progress of the Society. The contribution of ideas, of papers and articles for publication, the time spent in looking up references, our talks to the small groups of interested people in our communities, the letters written to the newspapers, and to prominent people to inform them about duodecimals, . . these are other forms our giving can take. The Society grows by the work of all of us. 6 ## DISINGENUOUS DISSUASIONS by Ralph H. Beard It is regrettably true that able and learned persons upon occasions cloak the speciousness of their reasoning in profound language in order to conceal the weakness of their position. These statements sometimes become, by frequent repetition, accepted as truths, and serve to confuse man's understanding. Whenever possible, such subterfuges should be unclothed, and the meager skeletons of their structure laid bare. Several such insidious utterances are attributable to members of the commission of the Academie Française which created the French Decimal Metric System. This was in the period of the French Revolution, and it is understandable that these men should have been concerned that their statements should not create resentment in the minds of the populace. Eric Temple Bell reports of this commission that Laplace, Lavoisier, and others, were "purged" out of their seats, but that Lagrange remained as president - "unaware that his gift of silence had saved not only his seat, but also his head. " These were illustrious minds, and one part of their work stands as a milestone in man's progress. They recognized the advantages in establishing the scale of numeration and the scales of the new weights and measures upon the same base. Unfortunately, they determined to base the weights and measures upon the decimal scale of the number system, instead of basing the scale of notation upon the duodecimal base commonly used in their weights and other denominate measures. The selection of the decimal base was made despite their recognition of the advantages of the duodecimal. Several members of the commission, in defending this action, advanced reasons which add no lustre to their names. Pierre Simon Laplace, the famous astronomer, said in his Exposition du Systeme du Monde, "Our arithmetical scale is not divisible by three and four, two divisions whose simplicity renders them very common. The addition of two new characters is sufficient to procure this advantage, but a change so important would have been infallibly rejected with the system of measures which was attached to it. Moreover, the duodecimal scale has the inconvenience of requiring that we retain the products of twelve numbers, which surpasses the ordinary length of memory to which the decimal scale is proportionate." One begins to smile upon reading the statement we have italicized, and the more one ponders its import, the broader becomes the smile. Today's school-children would be delighted by this recognition of their advanced ability. Joseph Louis Lagrange, one of the world's greatest mathematicians, advanced the argument that eleven would make a better base than twelve, and would have the advantage that it would give all fractions in the system the same denominator: - that, with any prime base, every systematic fraction would be irreducible and would therefore represent the number in a unique way. Because of Lagrange's unquestioned ability, this statement deserves most careful analysis. First let us make clear what type of fraction is meant. Regardless of the number base that is used, one can divide anything into as many parts as may be desired, and can represent such parts as fractions of the type: $$\frac{2}{3}$$, or $\frac{1}{2}$, or $\frac{3}{5}$, or $\frac{7}{9}$. These are sometimes termed "vulgar" fractions, and cannot be the type spoken of. Lagrange's reference to "fractions in the system, " or "systematic fractions" can only mean those commonly (and quite profanely) called "decimals." Regardless of the number base used, they are of the form: The last figure above represents the form assumed by the vulgar fraction one-seventh, when expressed as a "decimal" of the Base Ten. The dots above the figures 1 and 7 indicate that this series of figures is a revolving (or circulating,) "decimal." and must be carried out to the required degree of accuracy; but it also indicates that it is inexact because there is always a remainder, and that exactitude can only be secured by reverting to the vulgar type of fraction. In representing fractions in this way, a revolving "decimal" always results when the number of parts taken is a number that is prime to the base. In the case of Base Eleven, the only fractions that would not be revolving "decimals" would be the elevenths. (as: one-eleventh, or five-elevenths,) and multiples thereof. In order to afford a better concept of the relative convenience of the two bases, we show below a table giving the reciprocals of the numbers two to twelve on Bases Eleven and Twelve: | | Recip | rocals | |---------------|-------------------|---------| | n | Base Eleven | | | 2 | . 555555 | .6 | | 3 | .373737 | . 4 | | 4 | . 282828 | .3 | | 5 | . 222222 | .249724 | | 6 | . 191919 | .2 | | 7 | . 163 16 3 | .186%35 | | 8 | . 141414 | .16 | | 9 | . 124986 | .14 | | χ | . 111111 | .124972 | | \mathcal{E} | .1 | .111111 | | Twelve | . OXOXÓX | .1 | A review of the table would lead one to agree with Lagrange's statement that a systematic fraction of the prime base is represented in a unique way, but that this is an advantage is open to some question. The relative convenience of the Twelve Base is quite apparent. Tobias Dantzig, in his book, "Number, the Language of Science," sets forth these relative views very clearly. With the consent of the publishers, (The Macmillan Co., New York,) we quote from his excellent work. "It is interesting to speculate what turn the history of culture would have taken if instead of flexible fingers man had had just two 'inarticulate' stumps. If any system of numeration could at all have developed under such circumstances, it would have probably been of the binary type. "That mankind adopted the decimal system is a physiological accident. Those who see the hand of Providence in everything will have to admit that Providence is a poor mathematician. For outside its physiological merit the decimal base has little to commend itself. Almost any other base, with the possible exception of nine, would have done as well and probably better. "Indeed, if the choice of a base were left to a group of experts, we should probably witness a conflict between the practical man, who would insist on a base with the greatest number of divisors, such as twelve, and the mathematiciam, who would want a prime number, such as seven or eleven, for a base. As a matter of of fact, late in the eighteenth century the great naturalist Buffon proposed that the duodecimal system (base 12) be universally adopted. He pointed to the fact, that 12 has 4 divisors, while 10 has only two, and maintained that throughout the ages this inadequacy of our decimal system had been so keenly felt that, in spite of ten being the universal base, most measures had 12 secondary units. "On the other hand the great mathematician Lagrange claimed that a prime base is far more advantageous. He pointed to the fact that with a prime base every systematic fraction would be irreducible and would therefore represent the number in a unique way. In our present numeration, for instance, the decimal fraction .36 stands really for many fractions: $$\frac{36}{100}$$, $\frac{18}{50}$, and $\frac{9}{25}$, Such an ambiguity would be considerably
lessened if a prime base, such as eleven, were adopted. "But whether the enlightened group to whom we would entrust the selection of the base decided on a prime or a composite base, we may rest assured that the number ten would not even be considered, for it is neither prime nor has it a sufficient number of divisors." As a closing comment on the Base Eleven, consider the following numbers, expressed in the notation of that base: These are all prime numbers, yet we are unable to tell, without actually testing them, not only whether or not they are prime, but, surprisingly, whether or not they are odd or even. Exactly the same condition would apply to any prime base, and to the odd numbers, when used as bases. Dozenal Quirk: Using duodecimals instead of decimals, it would be possible to save exactly 3% digits in numbering the pages of 2% egro (90%) of the books published each year. This is true for all books having from 22 pages up to, and including 623 pages. From 624 pages up, an additional digit is saved for each added page until 222 pages are reached. After this the saving becomes constant at 546 up to 5953 pages. Harry C. Robert, Jr. 2 ## TO CALCULATE THE LOG₁₀ 2 by Harry C. Robert, Jr. In these modern times, nearly every one has excellent mathematical reference tables at his elbow. Many of us, including some capable mathematicians, know little or nothing of some of the simple "lost arts" of arithmetic. For instance, how many today realize the neatness of the old simple method of direct computation of logarithms? Yet this requires only an understanding of the elementary laws of exponents and arithmetic. Using the dozenal base, let us calculate $\log_{10}\ 2$: | Let log 2 = L | 200 25 | |---|--| | | and raise to L_2 power, $(\frac{3}{2})^{L_2} = 2$. | | Then $(10)^{L_0} = 2$ | 2 | | Obviously $0 \langle L_o \langle 1 \rangle$ | Now $1 \langle L_2 \rangle $ | | or $L_0 = O + \frac{1}{L_1}$ | and $L = 1 + \frac{1}{L_3}$ | | and $(10)^{O+\frac{1}{L_1}} = 2$ | and $(\frac{3}{2})^{1+\frac{1}{L_3}} = 2$ | | ÷ $(10)^0 = 1$, $(10)^{\frac{1}{L_1}} = 2$ | ÷ $(\frac{3}{2})^{\frac{1}{2}}$, $(\frac{3}{2})^{\frac{1}{L_3}} = \frac{4}{3}$ | | and raise to L_1 power, $10 = (2)$. | and raise to L_3 power, $\frac{3}{2} = (\frac{4}{3})^{L_3}$ | | Now $3\langle L_1 \langle 4 \rangle$ | Now 1 (L ₃ (2 | | and $L_1 = 3 + \frac{1}{L_2}$ | and $L_3 = 1 + \frac{1}{L_4}$ | | then, $10 = (2)^{\frac{3+\frac{1}{L_2}}{L_2}}$ | and $\frac{3}{2} = (\frac{4}{3})^{1+} \frac{1}{L_{4}}$ | | ÷ $(2)^{\frac{3}{8}} = \frac{3}{2} = (2)^{\frac{1}{L_2}}$ | $\div (\frac{4}{3})^{\frac{1}{4}}$ $\frac{9}{8} = (\frac{4}{3})^{\frac{1}{L_4}}$ | and raise to $$(\frac{9}{8})^{L_{4}} = \frac{4}{3}$$. Now $$2 \left\langle L_{4} \right\langle 3$$ and $$L_{4} = 2 + \frac{1}{L_{5}}$$ $$L_{5} = \frac{4}{3}$$ $$\frac{1}{8}, \quad (\frac{9}{8})^{\frac{1}{2}}, \quad (\frac{9}{8})^{\frac{1}{2}} = \frac{4}{3}$$ $$\frac{1}{183}$$ and $$(\frac{9}{8})^{2+\frac{1}{L_{5}}} = \frac{4}{3}$$ $$\frac{1}{183}$$ $$\frac{1}{2} = \frac{4}{3}$$ Now, obviously, $2 \left\langle L \right\langle 3 \right\rangle$ And the process may be repeated as often as desired to secure any necessary degree of accuracy. However, if we stop here, we may approximate L_5 as follows: $$L_5 = \frac{\frac{9}{8} - 1}{\frac{194}{183} - 1} , \text{ approximately,}$$ = 2.4 , approximately, and substituting in the several equations for L_0 , L_1 , L_2 , L_3 , L_4 , etc., we obtain: c., we obtain: $$L_0 = 0 + \frac{1}{L_1} = 3 + \frac{1}{L_2} = 1 + \frac{1}{L_3} = 1 + \frac{1}{L_4} = 2 + \frac{1}{L_5}$$ or, $$L_0 = 0 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}$$ or, approximately, $L_0 = \frac{11.8}{41.0} = 0.341 \text{ } 261$. Rounding this off to four places: $L_0 = Log_{10} 2 = 0.3420$. One more step, L_6 , would give us five correct places; etc. The log is shown in six-place tables as 0.342012. I do not find this method given in any work more recent than Davies, "Cyclopedia of Mathematics," 1856. The approximation of the last term is my idea, although the idea is not at all unusual. Davies does not use it in this case. #### FINDING SQUARE ROOTS by George S. Terry Probably, not many people enjoy going through the laborious process of extracting the square roots of larger numbers. They will be delighted to learn of an easy method that makes this work unnecessary. They can read the result from a simple little table. Suppose we need to find $\sqrt{\pi}$. $\pi = 3.184~809$. Our number is between 3 and 4. Two values are given for $\sqrt{3}$. We must choose between them, by looking at our number. Its root evidently starts with 1 rather than with 6, so we use the first of the root columns. $\sqrt{3}$ = 1.89 and the difference between this and $\sqrt{4}$ is 2.00 - 1.89 = 0.33 . Multiply this by the fraction in π , namely by .185, and add to the value of $\sqrt{3}$. We have $\sqrt{\pi} = 1.89 + .185(.33) = 1.93$ Divide π by this approximate root, and we get 1.935 73. Average this with 1.93 and we get a close value 1.932 97. | n | - | n | |---|-----|------| | 3 | 189 | 600 | | 4 | 200 | 622 | | 5 | 22% | 782 | | 6 | 255 | 85% | | 7 | 279 | 920 | | 8 | 292 | 997 | | 9 | 300 | 248 | | X | 312 | X25 | | 2 | 33% | 1000 | Put more figures on π = 3.184 809 493 £92 and proceed, if you wish a closer value. Divide this more accurate π by our more approximate root, and we get 1.932 975 819 561. Average this with 1.932 97, and we get $\sqrt{\pi}$ = 1.932 972 XXX 890, which is as good a value as you probably need. But you may still continue, if you put more figures on π and proceed as before. If your n begins with 1 or 2, find $\sqrt{4n}$ and divide the result by 2. # TABLES OF THE ENDINGS OF SQUARES Decimal and Duodecimal #### Decimal Squares | N | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | N2 | Ends | 1 | Las | t i | Pai | r |] | Ŋ | |---|----|----|----|----|----|---------|-----|----|----|----|----|------|----|-----|-----|---|------------|---|----| | 0 | 00 | 01 | 04 | 09 | 16 | 200 000 | 200 | 49 | 64 | 81 | | 0 | | | 00 | COLUMN TO SERVICE STATE OF THE PARTY | - | | Ó | | 1 | 00 | 21 | 44 | 69 | 98 | 25 | 56 | 89 | 24 | 61 | - | U | - | | 00 | | a spoken - | | J | | 2 | 00 | 41 | 84 | 29 | 76 | 25 | 76 | 29 | 84 | 41 | | 1 | 01 | 21 | 41 | 61 | 81 | 1 | 9 | | 3 | 00 | 61 | 24 | 89 | 56 | 25 | 96 | 69 | 44 | 21 | | | - | | - | | | - | - | | 4 | 00 | 81 | 64 | 49 | 36 | 25 | 18 | 09 | 04 | 01 | | 4 | 04 | 24 | 44 | 64 | 84 | 2 | 8 | | 5 | 00 | 01 | 04 | 09 | 16 | 25 | 36 | 49 | 64 | 81 | | | _ | | - | | - | | _ | | 6 | 00 | 21 | 44 | 69 | 96 | 25 | 56 | 89 | 24 | 61 | - | 0 | | 9 . | 25 | | | | 5_ | | 7 | 00 | 41 | 84 | 29 | 76 | 25 | 78 | 29 | 84 | 41 | | 8 | 16 | 36 | 56 | 76 | 98 | 4 | 8 | | 8 | 00 | 61 | 24 | 89 | 56 | 25 | 96 | 69 | 44 | 21 | _ | | | | | , 0 | -0 | - | - | | 9 | 00 | 81 | 64 | 48 | 36 | 25 | 16 | 09 | 04 | 01 | | 9 | 09 | 29 | 49 | 69 | 89 | 3 | 7 | #### Duodecimal Squares | N | 0 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Z | Ê | N2 | Trada | Last Pair | N | |---|----|----|----|----|----|----|----|----|----|----|----|----|--------|-------|-----------|---------| | 0 | 00 | 01 | 04 | 09 | 14 | 21 | 30 | 41 | 54 | 69 | 84 | 22 | 14. | БЦСБ | | Ö | | 1 | 00 | 21 | 44 | 69 | 94 | 01 | 30 | 61 | 94 | 09 | 44 | 81 | | 0 | 00 | 6 | | 2 | 00 | 42 | 84 | 09 | 54 | 21 | 30 | 81 | 24 | 69 | 04 | 61 | - | | 30 | 0 | | 3 | 00 | 61 | 04 | 69 | 14 | 81 | 30 | 22 | 54 | 09 | 84 | 41 | | | 21 | | | 4 | 00 | 81 | 44 | 09 | 94 | 61 | 30 | 01 | 94 | 69 | 44 | 21 | | | 41 | | | 5 | 00 | 22 | 84 | 69 | 54 | 41 | 30 | 21 | 24 | 09 | 04 | OI | | 2 | 61 | 1 5 7 2 | | 6 | 00 | 01 | 04 | 09 | 14 | 21 | 30 | 41 | 54 | 69 | 84 | XI | | | 81 | | | 7 | 00 | 21 | 44 | 69 | 94 | 01 | 30 | 61 | 94 | 09 | 44 | 81 | | | 21 | | | 8 | 00 | 41 | 84 | 09 | 54 | XI |
30 | 81 | 14 | 69 | 04 | 61 | - | ABCE | 04 44 84 | 2 % | | 8 | 00 | 61 | 04 | 69 | 14 | 81 | 30 | 21 | 54 | 09 | 84 | 41 | | 4 | 14 54 94 | 4 8 | | 2 | 00 | 81 | 44 | 09 | 94 | 61 | 30 | 01 | 94 | 69 | 44 | 21 | 1 | 9 | 09 69 | 3 9 | | 2 | 00 | 21 | 84 | 69 | 54 | 41 | 30 | 21 | 14 | 09 | 04 | 01 | i neer | 0 | 00 00 | 0.0 | #### Comparison - 100 duodecimal squares end in one of 4 figures, or in one of 14 pairs, relatively 4 and 14 egro. - 84 decimal squares end in one of 6 figures, or in one of 12 pairs, relatively 8.8 and 27.8 egro. 13 ## SOUARE SUMS OF CONSECUTIVE SOUARES by George S. Terry and Harry C. Robert, Jr. High on the priority list of the Mathematical Research Committee is an item of original research involving the study of those sums of consecutive squares which are themselves square. The brief preliminary paper which follows will serve to introduce this absorbing problem. An interesting and sometimes useful feature of dozenal numbers is the simplicity of the end figures of their squares. The last figure of a square number has the choice of only four integers dozenally as compared with six in the denary scale; the last pair has the choice of only a dozen and four pairs out of a total of a gross of pairs, as compared with a dozen and ten pairs decimally out of a total of approximately two-thirds of a gross. This feature has been useful in attempting to answer the question: - What N consecutive squares sum to a square? For example: - $$3^2 + 4^2 = 5^2$$ where N = 2; Mid-term = 3-1/2 $1^2 + 2^2 + \dots + 15^2 + 20^2 = 62^2$; N = 20; Midtm = 10-1/2 $16^2 + 17^2 + \dots + 23^2 + 24^2 = 65^2$; N = Σ ; Mid-term = 1Σ Not much is known about what number of squares in the run can produce a square sum. The Sum of such a series is $N\left[a^2 + \frac{N^2 - 1}{10}\right]$ where a^2 is the mid- square. A study of two-figure square endings and of divisibility indicates that no N which ends 3, 5, 6, 7, 8 or 2 can produce a square sum. This eliminates half the N's we need consider. Of the sums of those remaining, only about one-ninth give possible square endings. Following are least results for all possible N less than a gross. $$N = 20$$ $a = 10-1/2$ $N = 2$ $a = 3-1/2$ $N = 74$ $a = 177-1/2$ 80 $10-1/2$ 22 $31-1/2$ 42 $27-1/2$ 62 $199-1/2$ 22 22 21 When N itself is a square as is the case with N = 41 and X1 in the above table, the number of possible values of "a" is strictly limited, and for those two cases the values given are the only ones. For every case of N not square there are an infinite number of values of "a" for which the sum of N squares is a square. N = 2 has one series of solutions: N = 80 has eight. Each series has a simple recurrence formula whereby additional values may be obtained from preceding ones. For example: for N = 2; $$a_1 = 3-1/2$$; $a_2 = 18-1/2$; $a_3 = 92-1/3$ or in general, $a_n = 6a_{n-1}-a_{n-2}$ This same formula can be used for all cases where N = 2k2. For other values of N the recurrence formula is similar in form but different coefficients are necessary. #### BASIMALS OR RADICIMALS We are constantly confronted by the need for a proper term to apply to fractions of the systemic type. The public is accustomed to the use of the word "decimals." In connection with the use of the duodecimal base, we dodekaphiles habitually use the term "duodecimals." Neither of these usages is semantically proper. Nor is the use of the expression "decimal-form fractions" more correct in the least degree. What is desired is an expression for those quantities, less than unity and greater than zero, which are stated in the form of fractions of the base, with the denominator understood. The proper term should be applicable regardless of the scale of notation used. Perhaps the obsolete word "parcials" might become acceptable for this use. We would like to hear your preferences and any suggestions that you may care to offer. | | | | 28 | 5 | | Т | | T | 200 | 1 | 7 | | 1 | | T | Ī | 7 | 16 | | | 13 | 2 | | 70 7 | 3 | | 9 | 0 | T | T | T | 3 | 2 | | 0 | | Harry | |---------|--------|--------|---------|---------|-------------------|--------|----------|---------|---------|--------|--------|---------|---|---------|---------|-------|---------|--------|---------|--------|-------|--------|---------|--|---------|--------|--------|-----------------|-------|-------------------|-------|-------|-------|--------------------------|-------------------|-----|---------------| | 552 | 39 34 | 72 81 | £ 27.5 | 32 /1 | 907 9 | 1 | 70 70 | | 102 | 700 | 1 707 | | | | 23 00 | 37 57 | 15 18 | | 27 67 | 5 325 | | | | 11 17 | 5 225 | 37 3 | | | 0 120 | | 3 | | 152 | 5 25 | Unity | -02 | 0 | | 5 701 | 116 25 | 57 58 | | | 0 120 | 04 70 | 27 06 | 717 07 | 111 | | 5 7 87 | | 20 17 | 317 /1 | 11 115 | 5 401 | | 72 45 | £ 167 | | 5 301 | 37 32 | | The state of s | 7 162 | 5 152 | | 77 75 | 10 % | - | 7 68 | 17 12 | | | | -05 | Robert, Jr. | | 72 27 | | - | 2 77 9 | 101 | . 1 | 07 10 | 377 75 | 0 11 00 | 10 | 22 33 | | | | 26 21 | | | 11 157 | 15 85 | 5 345 | | £ 145 | 7 15 | | 5 242 | 31 37 | | | 77 57 | 20 63 | - 1 | \$ 45 | | 5 42 | | | -07 | | | | / 445 | | 507 17. | 2 1 2 | 70 | 10 04 | 42 37 | 11 010 | 2 40 0 | 202 2 | 16 777 | | S. Company of the second | | 175 0 | 74 45 | 35 57 | 17 25 | | 5 327 | | | 7 125 | 31 32 | 5 € 25 | | | | 2 | 10.01 | 16 27 | | 21 11 | 5 27 | | 30- | PRIME and | | 97 117 | | 5 6/5 | | 70 A | 10#31 | 100 PM | 20 000 | 202 2 | 30 00 | 11 162 | | | 7 / 4/ | 3 | | 387.3 | | 5 375 | 38 31 | 7 237 | 35 45 | | 5 11 25 | | | | 7 5 15 | 5 175 | | The second second | 17 11 | 5 75 | 7 37 | | 213 | -11 | | | 77 285 | 207 | 397 // | 100 31 | 23 01 | | TTT 1 | 7 410 | | 2 2 2 | | | 12 107 | | 2/2/1 | 1 22 11 | | | | 5 15 25 | £ 157 | 7 218 | 17 82 | | 5 251 | | 27 35 | 11 85 | 7 118 | 52 35 | 4 4 | 3 | | 5 51 | 7 75 | | -15 | FACTOR TABLE, | | | 2002 | | 1/4/1 | 2 421 | | 0 000 | | | | 25 52 | | 52 27 | | | 10 102 | | 5 17 25 | 7 271 | | 1£ 85 | | | 27 51 | | 7777 | | 5 192 | | 11 67 | | 2/10 | 1 10 | 1000 | | | -17 | , NUMBERS | | 57 65 | | Ju 132 | 777 7 | 004 | 00 100 | 70 00 | 17 15 77 | 77 2 | 100000 | | | 72 55 | ш | 20 36 2 | T 181 | | 27 75 | 5. 377 | 7 255 | 11 125 | 31 42 | | 5 277 | 15 87 | | 7 & 17 | | 5° 32 | | | | 5711 | | Secretary and the second | | 37- | g 12 | | 5 705 | - | C37 C7 | 26 20 | 3 | 0 2 01 | 2 | | | 7 11 37 | - 1 | 53 25 | 4£2 | | 30 50 | | 3/02 | 387 3 | | | 15 25 | | 11 111 | 7 127 | | | 5 205 | | 38 3 | | 777 | × 10× | | | 172 | 52 | -21 | ± 1 BA | | 37 85 | - | 304 | | | The second second | 0 40 | 5 252 | 37 70 | | 1 | 7 | 5 15 35 | 77 77 | 77 795 | 10 CT | | 5 7 67 | | | | € 147 | 1 | | 7 182 | | 11 95 | 52 45 | No. of the last | 15 51 | 77 35 | 7 80 | 200 | | | DAY TO AVE CANNOT | -25 | BASE XII | | \$ 325 | 1 | 11 000 | | 17 07 0 | 1 | | - 1 | 75 170 | - 1 | 52 107 | | € 225 | NAME OF TAXABLE PARTY OF TAXABLE PARTY. | | 31 | | 07 70 | 37 51 | 31 57 | 5 328 | 7 221 | 12 75 | £ 125 | | 17 97 9 | 1 | 1000 | 7 112 | | 5 725 | | | € 25 | 52 7 | | -27 | | | 54 7 25 | | | | 2 241 | | 77 | | 72 60 | | | 5 507 | | | | 1 11 14 | 7 17 | 72 | 37 28 | 11 138 | | c | 7 | | 35 37 | | 37 48 | 23 | | 7 105 | 20.1 | 5 107 | 11 04 | 15 17 | | 57 | -2£ | OI to 22 | | 350 | - | 1 | 38 | 100 | 200 | 200 | | | 22 | _ | _ | 20 | 1 | 72 | - | | | 16 | _ | 14 | 13 | | | 10 | | X | 8 | 8 | | 7 | n # | C | + | 1 | 0 | | 25 018 | | 25 | 2% | 29 | 28 | 27 | 26 | 123 | 200 | 20 | 23 | 22 | 21 | 20 | | 37 | 1% | 19 | 18 | 177 | 16 | 15 | 14 | 13 | 12 | 22 | 10 | 2. | X | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Har | |----------|---------|---------|---------|---------|--------|-------|--------|---------|--------|--------|-------------------|---------|---|---------|--------|--|---------|-------------------|---------|--------
--|-------|--------|--|--------|--------|--------|-------|-------|--------|---------------------------|------------------------|-------|-------|-------|------|-----|-----|------------------| | | | | 5 655 | | | 2 2/2 | | | 52 111 | 17 147 | | 7 357 | | 15 145 | 5 455 | - | | 38 48 | 2772 | 5 7 52 | | 113 | | 39 31 | 5 255 | | 7 157 | 27 37 | 25 35 | 5 £ 17 | 15 45 | attended to the second | | 7 57 | \$ 11 | | | -31 | Harry C. Robert, | | | | | | 5 15 45 | | 15 | | | | | £ 237 | 22 225 | | 7 332 | | 5 431 | 18 27 | The second second | | 17 % | | 27 58 | 22 15 | The state of s | 25 51 | 50 11 | 1.7 | 7 132 | | | 5 131 | The second second | | £ 37 | 7 32 | 5 31 | | -35 | obert, Jr. | | 21 25 12 | € 315 | 57 25 | | | - | - | - 10 | 52 117 | | 7 391 | | | | | 116 17 | | 31 67 | 7 291 | 5 15 27 | 38 45 | | | 25 52 | | 7 2 12 | | | 11 87 | 5 172 | | The state of the state of | 7 91 | | 52 17 | | 2 15 | | -37 | | | | N W I I | | 5 74 17 | 11 248 | € 291 | 10 00 | 70 70 | | 5 557 | 15 167 | 7 375 | 27 95 | | | 5 457 | 31 68 | | 37 23 | 7 11 25 | 5 357 | | | | 17 85 | 52 52 | 1 115 | 2 100 | 15 67 | 2 91 | 5 157 | | 11 48 | 7 75 | | 5 57 | | | -3£ | PRIME and | | 7 | 5 12 37 | | | | 15 195 | 0-11- | 2712 | 45 | 27 X7 | | 35 75 | 5 4%5 | | | | 7 307 | 25 85 | 5 32.5 | 17 27 | 2 168 | 11 131 | | 5 7 48 | 15 95 | | 39 37 | | 5 125 | | 7 107 | 39 3 | | 54 | 11 31 | | | 72 | -42 | FACTOR | | £ 327 | 72 85 | 5 274 | 42 67 | | | | | 5 17 37 | 7 3%5 | | 11 125 | €2 25 | | 5 481 | | 15 131 | 7 275 | | 5 152 | 35 51 | | | | 52 7 8 | 11 25 | | | 17 52 | 5 181 | | 27 75 | | 15 31 | 5 81 | £ 27 | | | -45 | TABLE, | | 5 70€ | | 31 71 3 | | | 1. 49 | 200 | 02 01 | 51 57 | | 25 XE | Çı | | | 7 11 31 | € 205 | | 5 402 | | | | 7 241 | 5 308 | 17 91 | 35 32 | | \$ 105 | | 71 | 15 58 | | 11 0 | 52 27 | | 100 | 73 | | 5 8 | -47 | NUMBERS | | | 5 6%7 | | 11 252 | | 25 107 | 2 1 2 | 20 6 7 | | | | The second second | 5 17 31 | | | 7 325 | Name of column 2 to Description of the local | | 5 11 37 | 181 3 | 18.91 | 15 27 | 7 225 | 39 25 | | | 21 45 | 200 | 5 127 | 7 125 | 18 3 | 11 52 | 17 35 | 5 % 7 | | | 7 25 | | -48 | 1S 6 n ± 1 | | | | | 7 12 25 | 20 | 11 241 | | 77 765 | - 1 | £ 25£ | 5 535 | 7 377 | | | | | 5 435 | 15 125 | | 7 277 | 22 | 5 2 37 | | 27 57 | | | 5 / 32 | 1/6/ | 35 31 | } | | 52 | | 72 | 15 25 | | 5 35 | | -51 | | | 5 711 | 2 35 | 1 | | 402 | | 224 | 40 404 | 15 181 | 42 57 | 11 205 | 5 511 | 7 352 | | £ 217 | 45 51 | | 5 17 27 | | | 7 25E | 12 87 | 52 75 | | | 2 117 | 78 97 | 5 / 3/ | 2 | | 25 31 | 100.000.000 | 5 111 | | 7 58 | | £ 17 | | -55 | BASE XII | | | 7 421 | 27 61 | 54 2 15 | C#7 37 | 30 05 | 000 | | | | 31 87 | | | | 27 91 | Г | | 7 221 | | | 5 35£ | | 15 % | | | 5 252 | 17 77 | 23 3 | 25 38 | 18 45 | 54 37 | 74 17 | | | | 5 52 | | | -57 | | | 17 125 | | 1 11 45 | | 2 03/ | | 1.0 | 3 | | 31 82 | 5 7 91 | | | | 15 147 | | 5 437 | | 7 | 1 | 277 | 50 | 37 | | 25 57 | 7 195 | 3 231 | | | | 16 | 5 £ 15 | 7 95 | | 7 | | 5 37 | | -52 | 31 to | | 35 | 2 | | 28 | 7 | 200 | - | 20 | | 100 | 22 | | 20 | + | 37 | | | 18 | | 126 | | THE OWNER OF OWNER OF THE OWNER OW | 13 | | 122 | 10 | × | + | 2 8 | 00 | | 6 | - | A | cs | | | 0 | | 55 | | - | 7 | 28 | + | 1 | 8 | 25 | 4 | డ | 22 | 7 | 8 | H | 0 | 8 | 8 | 17 | 16 5 | 6 | 4 | 73 | 7 | 20 | 2 | × | 8 | 8 | 70 | 0 | A | 3 | 0 | 1 | 0 | | Har | |--
--|--------|---------|--------|--|---------|---------|---------|---------|---------|---------|---------|--------|--------|---------|---------|--|--------|--------|---------|---------|-------|-------|-------|-------|---------|---------|--------|--|-------|-------|----------------|------|-----|------------------| | | | 54 141 | 27 107 | 11 251 | 18 138 | 7 427 | 5 585 | | £ 24£ | | | | 5 495 | | | | 11 | | | 7 5 95 | 5 285 | | | 15 75 | 312 | \$ 72 | 10 30 | 11 51 | 2 42 | 5 85 | 172 | 7 27 | | -61 | Harry C. Robert, | | 7 15 37 | O CONTRACTOR OF THE PARTY TH | £ 307 | 5 661 | 17 178 | | | 7 408 | 5 11 51 | | | | | 25 3 6 | | | 25 81 | 15 111 | 52 85 | | 37 77 1 | 1 | 5 172 | 2 107 | 31 35 | | - | FO 7 27 | | | | | 11 15 | 7 £ | -65 | obert, | | The state of s | 56 147 | | 37 91 | 7 2 42 | 45 62 | 5 12 31 | | | | 11 127 | 5 7 85 | | 307 07 | 25 82 | £ 1%5 | 5 3% | A CHILD AND SECTION | 7 172 | | 2 777 | | 11 87 | | 72 27 | 53 2 | | 12 00 | 15 38 | 22 3 | 7 61 | | | | -67 | Jr. PR | | 16 35 | 11 272 | 5 687 | | | 7 15 31 | | 5 587 | 277 3 | 37 75 | 25 X7 | | | 5791 | 11 178 | | | 38 75 | | 7 5 27 | | 5 15 12 | | | | 7 1 | 5 11 17 | | 19 3 | | 5 87 | 7 45 | | | 39- | PRIME and | | 20 32 | 15 205 | 7 487 | 11 17% | | 5 615 | | 18 128 | 25 £5 | 7 397 | 5 £ 57 | | 01 01 | 37 67 | | 5 415 | 7 11 27 | | 15 105 | 0.010 | 5 375 | 17 87 | 72 31 | | 52 51 | | | 79 77 | 37 7.5 | | 26 3 | | | 5 15 | -71 | FACTOR | | 18 167 | 5 621 | 32 87 | 7 2 51 | 25 111 | | 5 521 | 11 225 | 35 81 | | 7 15 27 | 5 421 | 777 17 | 17 100 | 2 127 | | \$ 95 | 7 272 | 37 42 | 11 100 | 737. 9 | 31 45 | 12 67 | 7 172 | 13 3 | 5 121 | 15 61 | | | 5 7 17 | | 11 25 | and the second | | -75 | TABLE, | | 7 517 | | 25 118 | 31 27 | 5 632 | € 295 | 15 182 | 7 17 27 | 12 125 | 34 11 8 | | | 00 04 | 27 20 | 5 7 75 | | 2 195 | and the same of th | 000 | 5 338 | 18 21 | 11 107 | 15 82 | 54 57 | | 17 61 | 5.95 | 7 111 | | 12 25 | | | | 7 11 | -77 | NUMBERS | | | | 31 75 | | 32 81 | 5 617 | | | 7 325 | € 251 | 5 517 | 45 57 | | 397 77 | | 54 7 15 | 17 105 | | | 1 | 20 37 | 7 125 | | 18 61 | 5 217 | 11 82 | 25 37 | 1 20 | 5 117 | 2 51 | 15 27 | | | 5 17 | -72 | 00 11 | | 0 200 | | 11 271 | 5 665 | | 7 447 | | | 5 565 | 377 37 | | £ 15 17 | | 0 465 | | 11 171 | | | 5 365 | 74 | 27 57 | £ 12£ | \$ 61 | 35% | | 7 147 | 07 77 0 | 6 7 7 | 17 37 | | | 578 | | | -81 | 1 | | ות | | 18 157 | 15 121 | 39 3 5 | | 7 11 32 | | | 5 541 | | | | 1 378 | 55 | 2 127 | | | 1 | | 7 15 17 | | 27 42 | 5 241 | 12 57 | 5 x 2 | 7 129 | 777 C | | | 11 35 | | 5 72 | | -85 | BASE XII | | 27 07 | | 5 682 | 7 481 | | T 10 10 10 10 10 10 10 10 10 10 10 10 10 | £ 285 | | 11 217 | | 7 122 | | 705 0 | 0010 | 45 42 | 17 711 | 25 112 | 5 72 2 | 100 | 20 20 | 17 77 | | | 7 181 | | | 5 185 | | | 7 81 | 5 85 | 15 15 | 11 17 | | -87 | . 5 | | | | 37 85 | 5 12 35 | | 17 175 | | | 5 15 32 | | 3 | 7 365 | TT TOT' | | 27 85 | 25 87 | | | 5 7 61 | | 2 141 | | 5 267 | 1 | | 15 51 | 2010 | | | ALTERNATION OF THE PARTY | 72 | | | | 38- | 62 to 82 | | 00 | Z | | - | - | 26 | 25 | 24 | 23 | | _ | 20 | 77 | - | | | 17 | 16 | 25 | 74 | 12 | 11 | 10 | | | 9 | 0 | 30 | cs | 4 | | 0 | 1 | 2 | P | 38
810 | | 25 | 28 | 1 | 200 | 700 | 36 | 25 | 24 | 3 | | 00 | 21 | 20 | I | 32 | 77 | 78 | 18 | 17 | Ko | 1 | 7 | 74 | 13 | 12 | 21 | 20 | | 3 | 7 | o | œ | 7 | 00 | On . | 4 | 3 | 0 | - | 0 | T | | Har | | |-------------------|---------|---------|--------|----------|--------|---------|---------|---------|-------|---------|---------|-----------|------|---------|---------|---|--------|----------|--------------------------|----------|--------|-------|---------|--------|---------|--------|--------------------------------------|-------------------|-------|--------|--------|-------
---|-------|--------|-------|--|------|------|---|-------|------------|--------------| | 57 £ 11 | | 40 10 | 75 75 | 3 77 3 7 | | 5 525 | 35 85 | 1321 | 2 | | | 5 1E 27 | - 11 | £ 21£ | 25 95 | 11 181 | 74 51 | 5 385 | 70 70 | 27 62 | | 77 77 | | 53 15 | 7 127 | 2112 | | | | 5 125 | 11 81 | | 7 27 | | 5 25 | | | 31 3 | | | -82 | Harry C. R | | | | 73 1. 9 | | | 100 | 2 11 3 | | 5 597 | | | 7 77 25 | 32 67 | 37 68 | | 56 25 | | | 35 61 | 1631 | 700 0 | 2007 | 77 745 | | | | 5 291 | 7 198 | | | | | 5 2 12 | 34 77 | | 72 15 | 21 45 | 5 97 | The state of s | | | | -95 | Robert, J | | | 5 712 | 21 111 | | -1 | 17 181 | 379 5 | 7 431 | £ 11 25 | | | 75 760 | 5 512 | | 36 | 12 105 | 76 57 | 79 /61 | 278 9 | | - | St. W. X | 2775 | 35 | 56 7 11 | | | 17 81 | AND DESCRIPTION OF PERSONS ASSESSED. | | 5 215 | 25 62 | 7 131 | | 2 75 | 5 118 | | | 11 27 | 7 31 | 5 75 | | -87 | Jr. PR | | | 5 15 4£
7 £ 57 | | 177 09 | | - 1 | 1 | 5 527 | 7 415 | | | | | 27 3 49 | | 32 67 | - | 313 | | 5 327 | | | 15 107 | | 37 45 | 5 7 51 | £ 131 | | | 27 75 | | 5 127 | | 72 18 | | | 5 27 | 17 25 | £ 31 | | 7 15 | | 38- | PRIME and | | | 25 125 | | | - | 5770 | | | | 107 17 | | 5 545 | 512 | 74 61 | 13 | | 37 77 3 | 10 | | | The second second second | - | | 52 81 | | | | 372 | | 5 £ 27 | 7 167 | | 17 57 | | 5 145 | 252 | 15 35 | 7 67 | | 5 45 | 23 | | -22.2 | FACTOR | | | 5 721 | | | 44 400 | 7 | 5 7 | £ 15 1£ | | | 0000 | 45 61 | 52 105 | | | 7 348 | | 10 30 | 5 421 | | 2 44 41 | 1 | 39 66 | 7 248 | 5 321 | | | 15 91 | | | 5 221 | 72 25 | | \$ 87 | 15 37 | 5 112 | | | 7 42 | | 50 | | -25 | TABLE, | | | | 1 15 35 | | 2 220 | | - | 11 237 | | 70 7 07 | 3 | 72 67 | | THE STATE | | 17 131 | | 93 37 | 18 17. | 7.47. /. | 2 | | 52 87 | | | | | 5 7 45 | | 25 42 | | | | 5 162 | | 7 22 | 17 31 | 11 37 | 5 62 | | | | -22- | NUMBERS | | | € 321 | 7/ 782 | 1 | | 5 647 | | 42 61 | 18 131 | | 0 40 | | 7 11 35 | 15 157 | | € 221 | | 5 441 | | 75 27 | 1 400 | 2000 | | 5 347 | 25 67 | 17 95 | | £ 112 | | 5 73 | | | | 15 57 | 5 147 | 18 31 | 7 85 | | | 52 5 | | | -7.2 | 00 B | | | 3£ 8£
7 517 | 0 680 | 200 | 0000 | | | 27 27 | 27 75 | | | | | 31 81 | | 5 11 45 | | 1 2 30 | 37 37 | 107 1.7 | 10.01 | 2000 | | | | | Cr | | | | 22 11 | | 5 195 | 7 117 | A COLUMN TO STATE OF THE PARTY | | | 5 95 | | | 7 17 | | -52 | 1 BASE | | | 7 455 | | 70 77 0 | 101 | 27 20 | | 17 162 | 2 277 | 1 | 1 | | 31 85 | | | | 5 471 | 70 97 | 332 / | 97 977 | 200 | 8 | 35 35 | | | | 72 35 | 5 271 | | The second second | 29 71 | | 1 | 5 171 | 7 8 11 | | 15 27 | | 54 15 | | | | -25 | IL R | STATE OF | | 5 17 45 | 51 | 02 00 | | | 73 11 | 5 522 | 37 81 | | | 5.25 | | 237 5 | | 7 15 25 | | Section white was the section of the section of | | 37 00 | 13 | - 1 | 11 147 | 7 251 | 22 17 | 5 255 | | | Charles and the second | | | 5 7 35 | | 27 31 | 25 42 | | 5 8 11 | | 7 51 | | | | -27 | | 14 | | 52 61 | 2/3 6 | 0 | 1007 | 75 777 | | 35 | 271 ×9 | 12 00 | 20 22 | 772 75 | 17 145 | 48 51 | | 5 497 | 7 2 37 | | | | 0 001 | | | | | 15 X7 | 5 11 27 | | u | 2111 | | | 5731 | | 17 45 | | | 52 18 | | 7 35 | 277 | - | 33- | 91 to | Terminations | | 22 | 29 | | 000 | 707 | 26 | | 24 | - | | _ | - | 20 | 1 | 22 | - | 67 | 18 | 17 | 200 | | 2.5 | ~ | 123 | | 22 | 10 | H | 8 | X | | œ | | 6 | Ç, | 4 | င်း | 2 | 1 | 0 | I | | 33 | ons | #### NOTES ON THE ARABIC NUMERALS We have extracted the following notes on the introduction of the Arabic numerals into Europe from The Cyclopedia of Education, published by Wm. Swan Sonnenschein in London, 1889. "The Arabic numerals, which have had so much to do with the progress of arithmetic in the western world, appear to have been known to the Hindoos as early as the fifth century. They were certainly introduced by the Arabians into Spain, though the precise date is not known. Gerbert, afterwards Pope Sylvester II, who died in 1003, is said to have carried these numerals from the Moors of Spain into France in 960, though this is doubted by many. "The more probable account is that Leonard of Pisa introduced them in 1202 in his Liber Abbaci. Others have supposed that the Alonsine tables (first constructed by the Moors at the court of Alonso,) first contained this system. Certain it is that this system was in the hands of the Persians and the Arabs before the twelfth century, and that they ascribed it to the Hindoos. "There seems to have been no general use of Arabic numerals in Europe before the invention of printing, and the works of Caxton do not contain them except as woodcuts. Merchants continued to keep their accounts in Roman numerals until the sixteenth century. "After the discovery of the cipher, there were several courses open, and we might have had a binary, quinary or duodenary scale instead of the decimal notation." #### QUERY What numbers are equal to the sum of powers of their integers? In squares $$25 = 2^2 + 5^2$$ $25 = 2^2 + 5^2$ In cubes $668 = 6^3 + 6^3 + 8^3$ $577 = 5^3 + 7^3 + 7^3$ $283 = 2^3 + 8^3 + 3^3$ $1122 = 1^3 + 1^3 + 2^3 + 2^3$ Will someone tell me if this list is complete? George S. Terry #### PERIODS OF PRIMES by Ralph H. Beard In a recent letter, Charles Q. De France remarked that: "Many of the smaller primes appear in pairs, as (decimally,) 41 and 271 with 5-place reciprocals, 7 and 13 with 6 places, 329 and 4649 with 7, 73 and 137 with 8, and so on." He tried the result of writing six 7's in a row, and found the following factors: 7) 777 777 7) 111 111 3) 15 873 11) 5 291 13) 481 37) 37 This led him into further checking, and he found that: "Repetition of any member of a pair, or group, of primes as many times as there are places in their reciprocals, will form a composite number divisible twice by that prime and by the companion." Analysis of this situation in regarding Base Twelve finds the same performance. But Mr. De France's statement should be that: Any prime, that is prime to the numberbase used, is a factor
of the composite number formed of a series of as many l's as there are places in its revolving reciprocal. Where primes are factors of the number base, this will not be valid. This can be readily checked by noting the absence of 5 in Mr. De France's figures, and, for the Twelve-Base, that 3 is not a factor of any number ending in 1. Where the periods of reciprocals of primes are factors of the periods of the reciprocals of other primes, then they are also factors of the other's larger series of 1's. For instance, 11 has a 2-place reciprocal, 111 has a 3, and 7 and 17 have 6's. Therefore, 7, 11, 17, and 111 are all factors of 111 111. 7) 111 111 11) 1% 537 17) 1 887 111) 111 This particular congruence directs our scrutiny to other congruences existing between primes, their reciprocals, and the periods and submultiples of the reciprocals. Congruences are, of course, invalid on different number bases. But the analysis of numbers for primes is mainly a matter of congruences and residues. The binary base separates the multiples of 2 from the odd numbers by congruences, and affords the classification of primes into the form of $4n \pm 1$. Base 6 eliminates the odd multiples of 3 and permits the refined classification of the form of $6n \pm 1$. The 10-Base serves to facilitate the elimination of the multiples of 5. With the application of the Base Twelve, something new has been added. On this base, all primes end 1, 5, 7, or \mathcal{L} . And these terminations each identify classes of primes with different characteristics. Since George Terry's Table of the Periods and Submultiples of the Reciprocals of Primes is of immense value in these considerations, it is again reprinted here, with his consent and the consent of the publishers of his work, "The Dozen System," (Longmans, Green & Co.,) in which it appears. Mr. Terry has pointed out many of these relationships in that study, and in his "Duodecimal Arithmetic." Among his announcements, are two of outstanding importance. He shows that, on the duodecimal base, the last figure of the prime and the last figure of the reciprocal add up to 10. For instance, the reciprocal of 7 is 186 %35. So far as our explorations extend, this is peculiar to the duodecimal base. Another individuality of the duodecimal base, announced by Mr. Terry, is that: Those primes whose reciprocals extend for the full period, (p-1,) end in 5 or 7 only. Consult the table and note the relative frequency of the primes of full period among those ending in 5 and those ending in 7. Also note that, as stated by F. Emerson Andrews in "New Numbers", the product of multiplying the period by the submultiple equals p-1. This product will end in 0, 4, 6, or χ for primes ending 1, 5, 7, or χ respectively. The table brings out these special individualities with beautiful clarity. Since the primes ending in 5 and 7 are of the form $10n \pm 5$, (or, if you prefer, $10n \pm 7$,) the duodecimal base can be credited with another important advantage, adding one more to the long list of ways in which it facilitates numerical operations by fitting into the natural patterns of numbers. It is a refined instrument for expediting research. ## PERIODS AND SUBMULTIPLES OF RECIPROCALS OF PRIMES From The Dozen System by George S. Terry | P. | Per | . S.M. | P. | Per | . S.M. | Р. | Per. | S,M. | P. | Per. | S.I | |---|--|-----------------------------------|--|---|--------|---|--|------------------|---|---|-----------------------------| | 11
31
51
61
81
91 | 2
9
13
30
14
46 | 644262 | 5
15
26
35
45
75
86 | 4
14
4
34
44
8
84
94 | 7
£ | 7
17
27
37
57
67
87 | 6
26
36
56
22
86
76 | 3 | £
1£
3£
4£
5£
6£
8£ | 1
12
12
25
22
35
45
55 | 2 2 2 2 2 2 2 2 2 | | 111
131
141
171
181
121 | 3
76
20
96
X0
£6 | 44
2
8
2
2
2 | 25
105
125
145
175
195
125 | £4
104
124
144
8
194
124
124 | 25 | 27
107
117
147
157
167
127 | 26
106
116
56
12
166
46
126 | 3
13
5 | 112
122
132
162
172
182
192 | 62
75
72
95
92
75
72 | | | 221
241
251
271
291
2%1
2£1 | 66
120
73
27
83
150
26 | 4
2
4
10
4
2
12 | 205
225
255
285
285
205 | 204
224
254
284
294 | | 217
237
267
277 | 86
92
266
276 | 3 | 21£
24£
25£
27£
2%
2££ | 10£
125
12£
13£
155
37 | | | 301
321
391 | 90
170
1%6 | 2 2 | 315
325
365
375
325
325 | 314
324
364
34
3X4
324 | 22 | 307
327
347
357
377
397
327 | 102
10%
46
11%
376
396
326 | 3
9
3 | 30£
32£
33£
34£
35£
3% | 165
175
17£
2£
18£
1£5 | 2
2
2
12
2
2 | | 401
421
431
471
481
421 | 100
63
109
13
24
9% | 4
8
4
38
20
6 | 415
435
455
465
485
485 | 414
434
454
464
44
4% | 22 | 427
437
447
457
497 | 426
436
446
15%
496 | 3 | 40£
41£
45£
46£
48£
42£ | 205
20£
22£
7
245
25£ | 7% 22 | | 511
531
541
591
521 | 266
276
54
3X
159 | 6
2
2
10
16
4 | 535
545
565
575
585
525 | 534
544
564
574
584
524 | | 507
517
527
557
577
587
527 | 182
516
526
556
116
1XX
66 | 3
5
3
£ | 51£
58£
59£
5££ | 45
2%5
2%£
2££ | 12
12
2
2
2 | # THE DeFRANCE ALGORITHM FOR FINDING THE LENGTH OF PERIOD OF RECIPROCALS OF PRIMES By Research Committee Feeling that some of our members might wish some explanation of the algorithm given in the DeFrance article on page 19 in the Bulletin of February 1947, the Research Committee has prepared the following simple explanation. While the basic theory will be found in most works on number theory under the discussion of con- gruences, none of these works give such a neat application of the principles as Mr. DeFrance has contrived. No understanding of congruences is required to follow or use this algorithm since it involves only the use of remainders resulting from ordinary division operations. To find the length of the period of the reciprocal of a prime such as 1%7 we need to know at what place in the division the remainder is 1. We know this will occur at place 1%6 but it may also occur at some sub-multiple of 1%6. We also know that since our number ends 7, the sub-multiple will be odd, the length of period singly even. (See The Dozen System, p. 35.) $1\%6=2\cdot3\cdot5\cdot9$; so the length of period may be 1%6, 76, 46, 26, 16, %, 6 or 2. Please, now open your copy of the last Bulletin to page 19. Since 1,000 divided by 1%7 yields a quotient of .006 and a remainder of 86, it is evident that the remainder (R_1) after place 1 is 10 and R_2 after place 2 is 100. Then by the DeFrance theorem $$R_3 = \frac{R_1 \cdot R_2}{127} \equiv 86$$ $R_6 = \frac{R_3 \cdot R_3}{127} = \frac{(86)^2}{127} \equiv 82$ $$R_{x} = \frac{R_{1} \cdot R_{3} \cdot R_{6}}{1277} = \frac{10 \cdot 86 \cdot 82}{1277} = 152 \qquad R_{10} = \frac{R_{6} \cdot R_{6}}{1277} = 25 \qquad R_{16} = \frac{R_{10} \cdot R_{6}}{1277} = 182$$ so the length of the period is not 2, 6, χ or 16. $$R_{26} = \frac{R_{16} \cdot R_{10}}{127} = 121 \qquad \qquad R_{46} = \frac{R_{26} \cdot R_{10} \cdot R_{10}}{127} = \frac{121(25)^2}{127} = 1$$ and the length of period is 46 places. In general $$R_{a+b} \equiv \frac{R_a \cdot R_b}{N}$$ and $R_{a+b+c} \equiv \frac{R_a \cdot R_b \cdot R_c}{N}$, etc. The foregoing algorithm is entirely general for all primes and with some restrictions can be applied to composite numbers also. It is applicable to any number base and can be used for odd and even lengths of period. For prime numbers with an even length of period the process can be shortened. For example, primes ending 5 or 7, having an even length of period, this period is in two complementary halves, e.g., 2497 and the remainder at the halfperiod will be (N-1), in the above example 1%6. So we may test for half-periods 1, 3, 5, 9, 13, 23, 39, E3 till we get the remainder 1%6. $R_1 = 10$; $R_3 = 86$; $R_5 = 46$; $R_9 = 183$; $R_{13} = 11$; and $R_{23} = 1\%6$. In addition to numbers ending 5 or 7, the foregoing short-cut applies to those primes ending 1 with an even length of period. Note that, for prime numbers having an even length of period, not only are the half-period and full period remainders complementary to N but at each corresponding place in first and second half- periods the remainders are complementary to N. So when we find two remainders whose sum is N, the difference of their places is the half-period. Thus in the foregoing we find that $R_{26} + R_3 = 121 + 86 = 127 = N$, from which we can deduce by 26 - 3 = 23 that the length of the half-period is 23. Only one feature of the more complicated case for composite numbers will be mentioned. If the remainder at the (N-1)th place is not 1, N must be composite. #### MATHEMATICAL RECREATIONS Mary Lloyd, Editor These mathematical amusements seem to be gaining in popularity and that makes me very happy. Among us dozeners, there are many who are mainly interested in the idea of counting by dozens, and it is well for these people to get out a pencil, once in a while, and give their duodecimal arithmetic a workout. These puzzles serve that purpose well since
there is a pleasure in solving any problem. There is a story about the Fibonacci problem in the last issue. Frederick the Great visited Pisa in 1225, and to test Leonardo's skill, challenged him to find that perfect square which remains a perfect square when increased or decreased by 5. Fibonacci found: $$3.5^2$$, $3.5^2 - 5 = 2.7^2$, and $3.5^2 + 5 = 4.1^2$ Of course, Fibonacci stated his results in vulgar fractions, and in the decimal notation, as we have yet to find that he had any concept of the possibility of any other. But this is just another illustration of the ease with which duodecimals fit the patterns of numbers. Maurice Kraitchik, in his Mathematical Recreations, gives the general handling of this problem and states that "it was fortunate that Frederick II did not give Fibonacci 1, 2, 3, or 4, instead of 5, for the problem would then be insoluble." Indirectly, there is a mathematical paradox insinuated here. George Terry says that the only equal regular polygons that can cover a plane are those whose sides number some factor of the dozen; i.e., 3, 4, or 6 sides. Also, that when more than one kind of regular polygon is used in these tessellations, only those can be used whose sides number some factor of two dozen; i.e., 3, 4, 6, 8, or 10 sides. So here's a problem. Which of the five regular polyhedra can solidly fill space? The five polyhedra are the tetrahedron, the cube, the octohedron, the dodecahedron, and the icosahedron. It does not require a second thought to select the cube as one of the space-filling forms. But what others? We know that, in normal piling of spheres, for instance, there are twelve surrounding and touching a thirteenth. When these are compressed so as to deform, and completely fill space, what regular solid results? The puzzles, this time, have some dangerous pitfalls. In the first one, only $\mathbb X$ letters are used and you'll have to watch your step. Just for fun, I picked words in darker hues for these arithmo-crypts. I fudged 'em from the word list of a skeletom puzzle. Don't look now, but the answers will be found on page 24. Mary. | EMOJ DTNOJS DNTEJ OETAS OELSA JOS | MOCHA ANALIDE MOCHA YCRMED YCDONH RDHAE | |---|---| | LAMP X GES LMYYP LUBGP DOGP YSUMYP | BONEGRIT
+ TORCCCIL
EENINEEAE | #### THE MAIL BAG The first fruits of the creation of the Committee on Mathematical Research appear in this issue, with the publication of the article on the Sums of Consecutive Squares. We wish to express our congratulations. One of the advantages of the dozen base that is not well known is that it affords close abbreviations of the square roots of numbers with surprising accuracy. The roots of eight out of the first dozen numbers can be closely approximated in two places of duodecimals. Outstanding among them is the increasingly important $\sqrt{5}$. This root can be stated as 2.2%, and the closeness of the approximation will be realized by noting that the square of 2.2% is 5.0004. Some of the elements of the importance of this figure lie in its place in the equations for the functions of the angles of the pentagon and the dodecahedron, in the summation of the terms of the Fibonacci Series, and in the applications of the Golden Section, or the Golden Mean. The laws of Dynamic Symmetry, promulgated by Jay Hambidge, involve its frequent use. - ... One of the good friends of The Duodecimal Society is Juan de Dios Tejada of Havana, Cuba, who writes a column called La Marca de Tecnica for the Havana daily Informacion. In his column for 21 March 1947, he devoted the entire column to the Fibonacci Series. He made extensive reference to the material of Harry Robert's article on that subject in the last issue of The Bulletin, with most courteous citation of The Duodecimal Society. - ... Jorge Carreras, our member who enlisted Mr. Tejada's interest, has now returned to his home in Havana, after a course of studies in American machine techniques under the auspices of the importing house of Feito y Cabezon, of Havana. On his way south to fly to Cuba, he stopped off in New York, and left with us a translation of Mr. Andrews' "An Excursion in Numbers," into Spanish. We hope to have the Spanish edition reprinted for the stimulation of interest in duodecimals among our South American and Central American neighbors. - Annual Award, we were invited to address the Men's Club of the Oakwood Heights Community Church of Staten Island. The group of approximately twenty five responded with gratifying interest. Their requests for copies of The Dozen System, by Mr. Terry, exceeded our available supply, and some had to be mailed later. - . . . The Staten Island Advance carried the announcement of the Award, and a report of the meeting. Notices of the Award were also carried by the N.Y. World Telegram, and The Telephone Review, among a list of others which included the home town newspaper, The York (Pa.) Dispatch. - . . . We have received more of Charles De France's interesting material on "Expansible Integers." Mr. De France has explored this selected field extensively, and has discovered many amazing characteristics of numbers of this type. All of his work has been done on the decimal base, and the labor of developing the corresponding relationships for the duodecimal base, and of testing and checking the resulting figures, requires more time than Ye Ed. has. We would like to hear from a volunteer from among our members who have been interested in Mr. De France's discoveries, for collaboration. - . . . Louis Carl Seelbach is another of our personal stimulators. In his book-worming, he turns up many an interesting line of thought, and gives us the needle. We get absorbed in running this stuff down, and Blooie! goes the schedule. His latest is the suggestion of a comparative analysis of the possibilities in the game of African Golf, (popularly termed "Craps,") as expressed in the different number bases, two, six, eight, ten, and twelve. They tell us that the Navy can supply considerable material on the subject. Research is always absorbing. - . . . Paul Van Buskirk has been waging doughty war with his keen duodecimal blade among the advocates of the Modular Development for the building and construction trades. Their program conceives adherence to governing dimensions of 4", 16" and 40". The deliberate disestablishment of the foot and the yard in favor of dimensions tending to conform to metric sizes should arouse the ire of every fervent dodekaphile. It seems to us to be greater common sense to urge conformance to sizes of 4", 12", and 36", which fit the long established and world known standards. Duodecimally, these sizes are 4", 10" and 30", and if it should be thought preferable to have the 4:10 ratio predominate, there is every reason to sanction 4", 10" and 40" (or 4 feet). - thought to improvement in the use of the particular talents of our members for the progress of the Society. The appeal of duodecimals acts as a sort of differential screen for the self selection of people with unusual abilities. The usual processes of putting these abilities into operation do not well fit this unusual condition. And he seeks to devise a convenient method of (a) discovering and cross indexing our talents, and (b) effecting their comfortable and rewarding application. - . . . This is a difficult undertaking; no complete solution can be expected. But through his effort some improvement in our organization may be attainable, and any result is pure profit. If your own thoughts develop fresh approaches to any phase of the problem, please write to Mr. Friedemann. He will probably have to write to you anyway, and his letter can be an answer to your suggestion. Ye Ed. #### ANSWERS TO CRYPTARITHMS Last Issue This Issue Why education Two manicures Almond jets Dye chromanil Plumbago dyes Negrito black Our common number system is decimal - based on ten. The dozen system uses twelve as the base. This requires two additional symbols: \mathbf{Z} , called dck, is used for ten, and \mathbf{Z} , called el, is used for eleven. Twelve is written 10, and is called do, for dozen. The quantity one gross is written 100, and is called gros. 1000 is called mo, representing the meg-gross, or great-gross. Modern numeration employs one of the greatest of man's inventions, the zero - symbol for nothing. It permits the use of place values. In our customary counting, the places in our numbers represent successive powers of ten; that is, in 365, the 5 applies to units, the 6 applies to tens, and the 3 applies to tens-of-tens, or hundreds. Place value is even more important in dozenal counting. For example, 265 represents 5 units, 6 dozen, and 2 dozen-dozen, or gross. This number would be called 2 gro 6 do 5, and by a coincidence, represents the same quantity normally expressed as 365. Place value is the whole key to dozenal arithmetic. Observe the following additions, remembering that we add up to a dozen before carrying one. | 94 | 138 | Five ft. nine in. | 5.81 | |-----|------|----------------------|------| | 31 | 694 | Three ft. two in. | 3,2' | | 196 | 322 | Two ft. eight in. | 2.8 | | 192 | 1000 | Eleven ft. seven in. | 2.8 | You will not have to learn the dozenal multiplication tables since you already know the 12-times table. Mentally convert the quantities into dozens, and set them down. For example, ? times 9 is 83, which is 5 dozen and 3; so set down 53. Using this "which is" step, you will be able to multiply and divide dozenal numbers without referring to the dozenal multiplication table. Conversion of small quantities is obvious. By simple inspection, if you are 35 years old, dozenally you are only 2f, which is two dozen and eleven. For larger numbers, keep dividing by 12, and the successive remainders ere the desired dozenal number. Dozensl numbers may be converted to decimal numbers by setting down the units figure, adding to it 12 times the
second figure, plus 12 (or 144) times the third figure, plus 12 (or 1728) times the fourth figure, and so on as far as needed. Or, to use a method corresponding to the illustration, keep dividing by X, and the successive remainders are the desired decimal number. Fractions may be similarly converted by using successive multiplications, instead of divisions, by 12 or x. | Num | erical | Progression | | | Multiplication | | | | on | Table | | | | | |---------------|--------|-------------|---------|---|----------------|---|---|---|----------|-------|----|----|----|----| | 1 | One | | | 1 | 2 | 3 | 4 | 5 | 10 | 7 | 8 | 8 | z | 2 | | 10 | Do | . 1 | Edo | 2 | 4 | 0 | 8 | 2 | 10
18 | 12 | 24 | 18 | 18 | 12 | | 100 | Oro | .01 | Egro | 4 | | | | | 20 | | | | | | | 1,000 | Mo | .001 | Emo | | | | | | 26 | | | | | | | 10,000 | Do-mo | .000,1 | E4o-mo | | | | | | 30 | | | | | | | 100,000 | Gro-mo | .000,02 | Egro-mo | | | | | | 40 | | | | | | | 1,000,000 | Bi-mo | .000,001 | Ebi-mo | | | | | | 48
50 | | | | | | | 1,000,000,000 | Tri-mo | and so o | n. | | | | | | 56 | | | | | |