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Practical Polygons
by “Troy” (Donald Hammond)

Regular polygons have fascinated and influ-
enced people throughout history. Few indeed
do not respond in some degree to the sym-

metry and character exhibited by these shapes, each
unique and yet plainly part of a family.

Straight-sided, they all yet inhabit a circle pre-
cisely — in fact, the circle is their final expression,
the Nirvana of regularity — and the rotational and
lateral symmetries thus ordained give the regular
polygons not only their visible perfections of math-
ematical form but also the indispensably useful ge-
ometry which some of them afford to Nature and en-
gineering alike. The equilateral triangle, the square,
the regular hexagon, the circle itself — all combine
purity with practicality. Selected regular polygons
are quite fundamental to our comprehension of space
and are hence perhaps worthy of more appreciation
and study than is presently fashionable in education.

It is hoped, in this article, to emphasize the
way in which regular polygons can be seen as two-
dimensional expressions of numbers: pictures, as it
were, which illustrate more clearly than does arith-
metic the connections between numbers themselves
and what we can perceive, measure, and use in the
real world.

The Plane Truth

If what we see is to approach the actuality, it must be
seen in two dimensions. While we may be impressed
by the view of, say, the Parthenon when seen from an
angle which shows it to be a solid and imposing struc-
ture, we are nevertheless obliged to move and look
directly at one face at a time in order to discern the
real shape: a viewpoint which gives the true angles
and proportions of the front of the Parthenon renders
its flanks invisible. We see but partially into the third
dimension of space and optical illusions abound in
line-of-sight perception (it is recorded that, during

the building of Kilsby tunnel on the London and
Birmingham railway, three men were killed as they
tried to jump, one after the other, over the mouth of
a shaft in a game of follow-my-leader∗) and accurate
perception is confined to the lateral plane.

Hence, despite the availability of various methods
of pictorial representation, engineers still insist on
three-view orthographic projection for their working
drawings and demand auxiliary projections to show
the true shapes of angled surfaces. Architects know
that the true plan determines the building. Plane,
two-dimensional figures are thus paramount to our un-
derstanding of space and proportion; and the regular
polygons — from line-segment to circle — constitute
a definitive basic set by which order may be perceived
in, and structure imposed on, our surroundings (Fig.
i).

Fig. i

Not the least of these virtues is the insight given
into the nature of numbers themselves: expressing
numbers by presenting them as vertices of regular
polygons shows very clearly properties which are not
always evident from mere counting — particularly to
children, but also to many adults who have never re-
ally understood numbers — and the educational need
for such understanding will not, surely, be disputed
in these days of declining numeracy?

1
2 1 + 1
3 2 + 1
One is a dimensionless point. Two is the first

line number: we need two points between which to
perceive length, the first dimension. It is possible to

∗See “The Railway Navvies” by Terry Coleman (Pelican A903).
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think of two as a regular two-sided polygon which
has length, but no area.

The difference between two and three is not
merely one unit: it is the difference between a line
segment with only one dimension and an equilat-
eral triangle which has two dimensions. Three is
seen to be the first area or surface number and we
could indeed measure area in terms of equilateral
triangles. Each angle of the R-triangle is two-thirds
of a right-angle and the shape will bisect into two
drawing-board set-squares with angles of 1

3 ,
2
3 , and 1

right-angle, each having a hypotenuse exactly twice
the length of the shortest side. (It is important to
note that these natural and convenient fractions of
the right-angle cannot be expressed by the Grade
protractor, which is the basis of the decimal-metric
system.)

0

2 1

Fig. ii

Constructing the regular trigon in its native cir-
cle (Fig. ii) — easily done by children — shows also
that with three, ‘handed’ rotation is possible: we can
travel round 0 – 1 – 2 – 0 or 0 – 2 – 1 – 0, whereas
two is simply an alternating number (cf. electric mo-
tors). From these easy beginnings, it already emerges
that three is a number of considerable significance
(well before any considerations of trigonometry). The
trigon shows the character of the number, in a way
that arithmetic cannot, so that it can be understood
by even the youngest. Evidently, any number-system
that takes insufficient account of the importance of
three is going to run into difficulties quite rapidly.∗

Four is the square number, and the square is the
optimum shape for area-measurement (we could tes-
sellate equilateral triangles or regular hexagons to
reckon area, but they have lengths in three directions,
whereas the square has only the two directions). The
properties of this right-angle figure, fundamental to
mathematics and just about every practical activity

that exists, are generally well-known and need little
amplification here. It is worth mentioning, however,
that four is also the first space number: four points
will delineate a tetrahedron and so contain a volume.

4→ 2 + 2→ 2× 2→ . · .· → �→

So, the square of the first prime number has its
own properties far in excess of mere evenness and is
a foundation-stone of any number structure; yet, ten
will not accept four as a factor. Twelve, of course, will.
A bisected square gives the companion set-square,
with half-right-angles.

Modular Figures

It was mentioned earlier that the characteristics of
numbers could be displayed by polygons. This de-
piction is enhanced if modular figures are drawn: for
each number n, circles are drawn with their circum-
ferences divided into n equal parts; and modular
shapes appear as, starting from a zero (top), we
“jump” round the circumference by ones, then by
twos, threes, and so on, joining successive points
with straight lines until we arrive back at zero.

0

1

2

3

Mod. 4

Four thus gives a square (4/1) and a straight line-
segment (4/2). The line-segment is, in this context,
to be regarded as a two-sided figure and will appear
with each even number.

With division of the circle into two, three, and
four equal parts, we have obtained regular shapes
which are, above all, useful — indeed, one may say,
indispensable — in that they form an indissoluble
bond between mathematics and practical necessity.
Line, triangle, square: length; the basis for geome-
try, trigonometry, and engineering construction; the

∗3 is the second prime number and, in conjunction with 2, controls the positions of all other primes: these are all members
of the set (2× 3)n± 1, n 6= 0, which is the least set to contain them.
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right-angle and optimum shape for areal mensuration.
Not a bad score! Regular trigons and squares will
tesselate in the plane with each other as well as with
themselves —

— and, so far, all seems harmonious and clear.

Into the Shadows

Five is a number at the edge of darkness. It is the
third prime number and, for practical purposes, the
last one for which there is an exact construction. The
construction is considerably more complex than hith-
erto, but is mathematically interesting: it involves
division of a line-segment in Mean and Extreme ratio
— the Golden Section — and will divide the circle to
give a regular pentagon.∗ The shapes in the set are
more suited to decoration and psychology than to
engineering and mensuration and are much favoured
for symbolic and magical purposes.

Mod. 5

The powerfully-attractive star figure, used in Her-
aldry, is ‘good’ when this way up, and ‘bad’ when
inverted.

Five is also the number of digits on the human
hand, and it is a matter for regret that the primi-
tive resort to finger-count has allowed this otherwise
rather impractical number to usurp the rightful place
of three as the second prime factor of the counting
base in general use.

Regular pentagons will not tessellate in the plane
with themselves or with other regular polygons (there
is a three-dimensional relationship with a dozen:
twelve regular pentagons form a regular dodecahe-
dron), but, by comparison with the illumination given
by two and three, five is a shaded and mysterious
number: mathematically significant but of limited
use. We should respect five and allow for its angular
importance; but should not succomb to its esoteric
charms when tackling arithmetic!

Daylight Again

Six is the product of those all-important first two
primes and gives us another useful shape: the regular
hexagon. This is an optimum, and used as such by
both Nature (honeycombs) and engineers (nuts and
bolts). A plane tessellation of regular hexagons gives
bees and wasps the most efficient possible accomo-
dation for their pupæ; a square nut is weak and an
octagonal one slips in the wrench, but the hexagonal
nut is just right.

Mod. 6

It is amusing to squeeze a pack of cigarettes and
watch the hexagonal tessellation form itself as the
area available gets reduced!

The modular set for six exhibits the equilateral
triangle and the line; six also controls the location of
prime numbers and could make quite a good number
base. The square is lacking, however, and so we must
seek a little further for the best possible.

∗See Dozenal Review No. *30.
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Stage

Chichester Festival Theatre

The optimal properties of the hexagon are not lost
on some architects: the Festival Theatre possesses
the presentational virtues of Shakespeare’s “Globe”
combined with the strength and economy of steel-
frame construction using ordinary straight stock, and
is a much-admired, successful threatre.

Seven and Eleven

The gloom we saw gathering about five becomes
fully established with primes greater than five as
far as circle-division is concerned. It is not possible
to find an exact construction for seven and eleven
in the plane. The modular sets for these numbers
show the pattern started with five: one convex poly-
gon followed by a set of re-entrant star figures (dark
stars?). A heptagonal curve-of-constant-width is used
for coins by British decimalists: perhaps they hoped
thereby to make such coinage interesting to people
being deprived of the richness and beauty of £sd?

Decimal coin

Mod. 7

Mod. E

The seven-day week arose from the Lunar cycle
and accounts for the inclusion of seven as a factor in
the larger English weights, which proceed in a binary
fashion up to 4 Lb, but then go to 7 Lb, so that
all the ensuing weights up to 1 ton are divisible by
7 as well as by 2. It makes sense if one is feeding
animals or firing boilers, etc., and wishes to order
fuel or food at a regular time in the working week,
since the arithmetic is then easy.∗

Three Curate’s Eggs†

Eight, nine, and ten are good in parts: the modu-
lar set for eight gives the square and a line-segment;
nine gives the regular trigon; ten (decim) yields a
regular pentagon, a line, and two stars. Eight thus
shows two useful shapes, but there is little to choose
between nine and ten on this criterion: each has two
re-entrant figures and one useful shape. Admittedly,
two is a more important prime factor than three;
and ten accepts two. The overall weakness of the
decimal base is, however, shown very clearly by this
two-dimensional analysis: running one’s gaze along
the modular set for ten shows at a glance the paucity
of useful relationships afforded by this number.

∗The English ton is decimally 2240Lb, dozenally 1368Lb and is divisible by two, five and seven. 2 Lb per day = 1 st./week.
†A British term describing something that is mostly bad, but has good qualities which are endowed with disproportionate

redeeming effect. —Ed.
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Mod. 8

Mod. 9

Mod. X

Arrival

As we proceed, regular polygons with increasing num-
bers of sides grow more and more to resemble the
circle — which is indeed a regular polygon with an
infinite number of sides — and to lose their very
angularity. It has, however, been well worth coming
this far! Twelve is really a ‘box of delights’: the
modular subjects of the regular dodecagon include
those very shapes we know to be essential; and the
dozen is the least number to do so.

The offspring of the dozen serve us well. Five of
the six possible figures are convex polygons and four
of these are essential to engineering and mathemat-
ics. If we omit the regular dodecagon itself (and it
has significant properties, of which more in a later
article), we get a ratio of four essential shapes to six
possible. This two-thirds ratio is exceeded by six,
which gives unity in this respect: all the shapes for
six are basic; but six will not provide the necessary
square, and so twelve is the key number.

Mod. 10 (1 Dozen)

Need we search any further for a rational, service-
able number-base? Can there possibly be a better?
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The table below compares the modular-plane-figure content of each number up to one dozen.

Circle No. of figures No. of convex No. of essential
divisions in the set figures shapes

2 1 1 1
3 1 1 1
4 2 2 2
5 2 1 0
6 3 3 3
7 3 1 0
8 4 3 2
9 4 2 1
X 5 3 1
E 5 1 0
10 6 5 4

The presence of a prime number is shown by a “1” in the third column.
It can be argued that, apart from the circle itself, there are only four essential regular polygons for

practical purposes. Twelve has them all.

In part one of this article it was observed that modu-
alr division of the circle gives rise to families of regular
polygons, each polygon being thus a two-dimensional
pictogram showing the characteristics of a number
more clearly than is possible with a mere symbol (the
equilateral triangle really is a picture of three). It
also emerged that the modular shapes generated by
the number twelve are those very polygons whose
angular properties underly both engineering and nat-
ural structures; thus pointing to the significance of
twelve as the most efficient base number.

More About Tessellation

No apology is made for returning to this topic: tes-
sellations of regular polygons illustrate very well how
numbers work with each others — or themselves —
in two (or more) dimensions.

Purely regular plane tessellations (all tiles the
same shape) are well-known and use only regular

trigons, squares and regular hexagons (36, 44, and
63). No others are possible: for a plane tessellation,
the interior angles of polygons meeting at a vertex
must sum to exactly one turn, or four right-angles.
(The notation used above is that employed by Messrs.
Cundy & Rollett in their standard work: ‘Mathemat-
ical Models’, whereby the cardinal numbers indicate
the polygon(s) concerned and the indices denote how
many of each meet at any vertex in the tessellation.
Examples: 36 means that six equilateral triangles
meet at a vertex, and 4.82 means that one square
and two regular octagons are contiguous in this way.)

The semi-regular tessellations consist of mixtures
of regular polygons to cover the plane. There are just
eight of these, and their notations are:

32.4.3.4, 3.6.3.6, 34.6, 3.∗102, 4.82, 4.6.∗10
and 3.4.6.4.

Note that *10 means one dozen! Two of these are
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illustrated overleaf∗ ; those so inclined may enjoy con-
structing the set. . .

4.82 3.∗102

Eight semi-regular tessellations, together with the
three regulars, are the only plane tilings possible us-
ing regular polygons as elements. Again, the nature
of just which numbers work together in such harmony
is clear: they are simply related to the dozen; and
the twelve-sided dodecagon is the last and greatest
regular polygon which can be used in such patterns.

It may be noted at this point that regular pen-
tagons and decagons cannot form plane tessella-
tions — by themselves, with each other, or with any
other regular polygons — and an extra dimension is
needed in order to accommodate these five- and ten-
sided shapes. This is something to be borne in mind
by those who advocate adoption of the foundation-
stone of the decimal-metric system: the Grade pro-
tractor. What will their draughtsman’s set-squares
be like? The present “thirty-sixty” set-square won’t
fit a centesimal angle-scale; so, shall we see pentago-
nal nuts and bolts? Spanners and wrenches with one
flat jaw and a corner opposite? Difficult to slide-on,
I should think!

Spanner for decimal nuts. . . ?

We can quite easily predict which tessellations are
likely to work by making a list of the sizes of interior
angels for regular polygons, in terms of right-angles:

Eq. triangle 2
3 R. octagon 11

2
Square 1 R. decagon 13

5
Pentagon 11

5 R. dodecagon 12
3

Hexagon 11
3

Knowing that each plane vertex demands exactly
four right-angles, and that all vertices must be con-
gruent, we look for collections of the above rationals
which add-up to four. For example:

11
3 + 11

3 + 11
3 = 4, which shows that regular

hexagons will tessellate (which we knew anyway);
but

12
3 + 11

3 + 1 = 4 is more interesting and suggests
that a tessellation of regular dodecagons, regular
hexagons and squares is possible (and indeed it is).
In some instances, however, a collection which sums
to four will not extend to a full tessellation because
the vertices cannot be made congruent throughout.
It is just this which goes wrong when we try the
pentagon and decagon:

11
5 + 13

5 + 11
5 = 4, but will not tessellate in any

arrangement. . . Poor decimal! So near and yet so far!
Here, ten will not work even with its own factor, five,
whereas the polygonal factors of a dozen — three,
four, six, and twelve — harmonize elegantly; even
eight is used in one instance.

Areas of Regular Polygons

The calculation of area affords further insight into
how the regular figures illuminate the essential
tractability of twelve-based shapes (and numbers)
by comparison with the denary set. Any regular
polygon, of course, has by definition a circumscribing
circle and — if the polygon is constructible in the
plane — a surd† formula can be derived, giving its ex-
act area in terms of r, the radius of the circumscribed
circle.

For example, the area of an equilateral triangle
(regular trigon), drawn in a circle of radius r, is found
as follows:

∗In the original; in this edition they are directly below. —Ed.
†That is, a formula that cannot be so simplified to remove any square root expressions. —Ed.
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r

b

h

h = 3
2r (const.), h = 2√

3h (Pyth.)

∴ b = 2√
3 ·

3
2r =

√
3r

Area of equilateral triangle
= 1

2bh = 1
2 ·
√

3r · 3
2r = 3

√
3r2

4

So, we have a fairly simple formula with one
square root. The area of a regular hexagon in a circle
with radius r is twice that of the equilateral triangle:

Ahex = 3
√

3r2

2
The regular hexagon turns up quite often in en-

gineering and nature; it also possesses the unique
property that its length of side, L, equals the radius
of its circumcircle, r. The length of side is easily mea-
sured and so here, for those who may find it useful,
is a play-on-word mnemonic for the area formula:

The areal bee
Makes hexagons true:

Each three-root-three
L-squared over two. . .

The regular octagon features, not surprisingly,
root-two:

Aoct = 2
√

2r2

The square is, naturally, even simpler:

Asquare = 2r2

However, the most impressive (and satisfying)
result is the area, in these terms of the regular do-
decagon:

Adodec = 3r2

— just that! Our twelve-sided regular polygon,
which underlies all those useful subset shapes (see
Part I) and tessellations, and whose benign geometry

defines our clock-dials, shares only with the square
itself the distinction of a completely rational area
(there can be no others.

So, what of five and ten? Regular pentagons and
decagons can be constructed in the plane and their
areas, too, can be expressed in surd form in terms of
r. But what expressions they are!

Apent = 5r2

4

√
5 +
√

5
2

Adec = 5r2

4

√
X− 2

√
5

In each of these we get a square root of a square
root — a fourth root. Just as the figures theme-
selves need an extra dimension for tessellation, so
do they require a second-stage irrational for area
calculation. . .

Rational Square Root 2nd and 4th roots

Square 2r2 Trigon 3
√

3r2

4 5-gon 5r2

4

√
X− 2

√
5

10-gon 3r2 6-gon 3
√

3r2

2 X-gon 5r2

4

√
X− 2

√
5

8-gon 2
√

2r2

Conclusion

This two-part article has considered aspects of cer-
tain numbers as revealed by depiction in the form
of modular polygons. We see most clearly in two di-
mensions and this representation allows insight into
the nature of low numbers deeper than that afforded
by linear arithmetic. What emerges very strongly
is the extraordinarily pivotal role of twelve as the
framework for those polygons which are both readily
constructed and indispensable in the practical world.
Practical polygons, it seems — like practical measure-
ment and practical arithmetic — come, as it were,
by the dozen!
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This article was originally published in Numbers 4 and 5 of
The Dozenal Journal, which was a joint publication of
the Dozenal Society of Great Britain and the Dozenal Society
of America. Number 4 was released in the spring of 1196
(1986.) in Denmead, Hampshire, England. Number 5 was
released in spring of 1197 (1987.) in the same place. Donald
Hammond, a long-time stalwart of the dsgb, published this
article (along with many other excellent pieces) under the
pseudonym “Troy.”

The work has been completely retypeset using the LATEX
document preparation system, and is here set in Latin Modern,
12×15. The figures have all been redesigned in the META-
POST graphics description language. In addition to this, the
following alterations were made: Oxford commas were added
throughout. Also, ellipses have been made consistently three
dots throughout, except at the end of a sentence, when they
are four dots. Variable names in equations, such as r, have
been consistently italicized. On page 2, variable “N” has been
rendered n. In the footnote on page 3, “Dozenal Review” was
changed to small caps, and the footnote marker was placed

after the period. On page 4, for the footnote about the ton,
the footnote marker was moved to after the period. On page
4, the image of the hexagon containing what appears to be
a Greek warrior’s picture was omitted. The theater, on the
other hand, was redrawn in METAPOST. On page 4, “elf” has
been replaced by “eleven.” On page 4, another reentrant star
was added for mod. 8. On page 5, the order of presentation for
the modular figures for 9 was changed, and another star was
added. On page 5, two more shapes were added for the modu-
lar figures for X. On page 5, the order of presentation for the
modular figures for 10 was changed, and several more shapes
were added. On page 6, the typographical error “emplyed”
was fixed to “employed.” On page 7, the table of numbers of
right angles in various polygons was completely redesigned.
On page 8, in the phrase “regular pentagons and decagons can
be constructed,” the first word was capitalized. On page 8,
the table was extensively redesigned.

This document is proudly made available by the Dozenal
Society of America (http://www.dozenal.org).
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